A high-speed gas bearing test rig was developed to characterize rotordynamic, thermal, and thrust load performance of gas bearings being developed for an oil-free turboexpander. The radial bearings (RBs) tested in this paper were tilting pad journal bearings with radial compliance features that allow the bearing bore to increase to accommodate shaft growth, and the thrust bearings (TBs) were a spiral groove type with axial compliance features. The TB accounts for over 90% of the combined bearing power consumption, which has a cubic relationship with speed and increases with case pressure. RB circumferential pad temperatures increased approximately with speed to the fourth or fifth power, with slightly higher temperature rise for lower case pressure. Maximum steady-state bearing pad temperatures increase with increasing speed for similar cooling mass flow rates; however, only the TB showed a significant increase in temperature with higher case pressure. The TBs were stable at all speeds, but the load capacity was found to be lower than anticipated, apparently due to pad deformations caused by radial temperature gradients in the stator. More advanced modeling approaches have been proposed to better understand the TB thermal behavior and to improve the TB design. Finally, the RBs tested were demonstrated to be stable up to the design speed of 130 krpm, which represents the highest surface speed for tilting pad gas bearings tested in the literature.

References

References
1.
Zhu
,
X.
, and
San Andrés
,
L.
,
2007
, “
Rotordynamic Performance of Flexure Pivot Hydrostatic Gas Bearings for Oil-Free Turbomachinery
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
1020
1027
.
2.
San Andrés
,
L.
,
2006
, “
Hybrid Flexure Pivot-Tilting Pad Gas Bearings: Analysis and Experimental Validation
,”
ASME J. Tribol.
,
128
(
3
), pp.
551
558
.
3.
San Andrés
,
L.
, and
Ryu
,
K.
,
2008
, “
Flexure Pivot Tilting Pad Hybrid Gas Bearings: Operation With Worn Clearances and Two Load-Pad Configurations
,”
ASME J. Eng. Gas Turbines Power
,
130
(
4
), p.
042506
.
4.
San Andrés
,
L.
, and
Ryu
,
K.
,
2015
, “
Dynamic Forced Response of a Rotor-Hybrid Gas Bearing System Due to Intermittent Shocks
,”
ASME
Paper No. GT2009-59199.
5.
San Andrés
,
L.
,
Rohmer
,
M.
, and
Park
,
S.
,
2015
, “
Failure of a Test Rig Operating With Pressurized Gas Bearings: A Lesson on Humility
,”
ASME
Paper No. GT2015-42556.
6.
Sim
,
K.
, and
Kim
,
D.
,
2007
, “
Design of Flexure Pivot Tilting Pads Gas Bearings for High-Speed Oil-Free Microturbomachinery
,”
ASME J. Tribol.
,
129
(
1
), pp.
112
119
.
7.
Sim
,
K.
, and
Kim
,
D.
,
2008
, “
Thermohydrodynamic Analysis of Compliant Flexure Pivot Tilting Pad Gas Bearings
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
032502
.
8.
Rimpel
,
A.
, and
Kim
,
D.
,
2009
, “
Rotordynamic Performance of Flexure Pivot Tilting Pad Gas Bearings With Vibration Damper
,”
ASME J. Tribol.
,
131
(
2
), p.
021101
.
9.
Rimpel
,
A.
, and
Kim
,
D.
,
2009
, “
Experimental and Analytical Studies on Flexure Pivot Tilting Pad Gas Bearings With Dampers Applied to Radially Compliant Pads
,”
ASME J. Tribol.
,
131
(
4
), p.
041001
.
10.
Šimek
,
J.
,
2012
, “
Application of a New Type of Aerodynamic Tilting Pad Journal Bearing in Power Gyroscope
,”
Eng. Mech.
,
19
(
5
), pp.
359
368
.http://www.engineeringmechanics.cz/pdf/19_5_359.pdf
11.
Ertas
,
B. H.
,
2009
, “
Compliant Hybrid Journal Bearings Using Integral Wire Mesh Dampers
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022503
.
12.
Ertas
,
B. H.
,
Camatti
,
M.
, and
Mariotti
,
G.
,
2010
, “
Synchronous Response to Rotor Imbalance Using a Damped Gas Bearing
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
032501
.
13.
Delgado
,
A.
,
2015
, “
Experimental Identification of Dynamic Force Coefficients for a 110 MM Compliantly Damped Hybrid Gas Bearing
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p. 072502.
14.
Whipple
,
R.
,
1951
, “
Theory of the Spiral Grooved Thrust Bearing With Liquid or Gas Lubricant
,” Atomic Energy Research Establishment, Oxfordshire, UK, Technical Report No.
AERE T/R 622
.https://www.osti.gov/scitech/servlets/purl/4359630
15.
Pan
,
C.
, and
Sternlicht
,
B.
,
1965
, “
Distortion of Gas Thrust Bearing Due to Viscous Shear
,” Defense Technical Information Center, Fort Belvoir, VA, Technical Report No.
MTI-65TR49
.http://www.dtic.mil/docs/citations/AD0629038
16.
Pan
,
C.
, and
Sternlicht
,
B.
,
1967
, “
Thermal Distortion of a Spiral Groove Thrust Bearing Due to Self-Heating
,”
J. Lubr. Technol.
,
89
(
2
), pp.
197
202
.
17.
Muijderman
,
E.
,
1967
, “
Analysis and Design of Spiral-Groove Bearings
,”
J. Lubr. Technol.
,
89
(
3
), pp.
291
305
.
18.
Wong
,
C. W.
,
Zhang
,
X.
,
Jacobson
,
S. A.
, and
Epstein
,
A. H.
,
2004
, “
A Self-Acting Gas Thrust Bearing for High-Speed Microrotors
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
158
164
.
19.
Waumans
,
T.
,
Mattheijssens
,
J.
,
Meuws
,
D.
,
Vleugels
,
P.
,
Peirs
,
J.
,
Al-Bender
,
F.
, and
Reynaerts
,
D.
,
2007
, “
Design and Testing of Aerodynamic Thrust Bearings for Micro Turbomachinery Applications
,” The 7th International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion Applications (
PowerMEMS
), Freiburg, Germany, Nov. 28–29https://lirias.kuleuven.be/bitstream/123456789/163219/1/PowerMEMS_2007_twaumans.pdf.
20.
Hashimoto
,
H.
,
Ochiai
,
M.
, and
Sunami
,
Y.
,
2012
, “
Robust Optimum Design of Fluid Dynamic Bearing for Hard Disk Drive Spindle Motors
,”
ASME J. Tribol.
,
134
(
4
), p.
041102
.
21.
Malanoski
,
S.
, and
Waldron
,
W.
,
1973
, “
Experimental Investigation of Air Bearings for Gas Turbine Engines
,”
ASLE Trans.
,
16
(
4
), pp.
297
303
.
22.
Constantinescu
,
V.
, and
Galetuse
,
S.
,
1987
, “
On the Dynamic Stability of the Spiral-Grooved Gas-Lubricated Thrust Bearing
,”
ASME J. Tribol.
,
109
(
1
), pp.
183
188
.
23.
Zirkelback
,
N.
, and
San Andrés
,
L.
,
1999
, “
Effect of Frequency Excitation on Force Coefficients of Spiral Groove Gas Seals
,”
ASME J. Tribol.
,
121
(
4
), pp.
853
863
.
24.
Kim
,
J.
,
2014
, “
Compliant Bearing
,” U.S. Patent No.
US8845196 B2
https://www.google.tl/patents/US8845196.
25.
Rimpel
,
A.
,
Moore
,
J.
,
Grieco
,
J.
,
Shy
,
P.
, and
Klein
,
J.
,
2012
, “
Rotordynamics of a 105,000 rpm Oil-Free Compressor-Expander for Subsurface Natural Gas Compression and Reinjection
,”
ASME
Paper No. GT2012-69119.
26.
ISO
,
2003
, “
Mechanical Vibration—Balance Quality Requirements for Rotors in a Constant (Rigid) State—Part 1: Specification and Verification of Balance Tolerances
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 1940-1:2003
.https://www.iso.org/standard/27092.html
27.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2007
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—Refprop, Version 8.0
,”
National Institute of Standards and Technology
, Gaithersburg, MD.https://www.nist.gov/publications/nist-standard-reference-database-23-reference-fluid-thermodynamic-and-transport-0
28.
Rimpel
,
A.
,
Allison
,
T.
,
Moore
,
J.
,
Grieco
,
J.
,
Shy
,
P.
,
Klein
,
J.
, and
Brady
,
J.
,
2012
, “
Open-Loop Aerodynamic Performance Testing of a 105,000 rpm Oil-Free Compressor-Expander for Subsurface Natural Gas Compression and Reinjection
,”
ASME
Paper No. GT2012-69017.
29.
Greenhill
,
L.
, and
Lease
,
V.
,
2001
, “
Hydrostatic Pivoted Pad Bearing for Oil-Free Turbomachinery
,”
First International Symposium on Stability Control of Rotating Machinery
(ISCORMA), South Lake Tahoe, CA, Aug. 20–24, Paper No.
3005
http://www.dynatechengr.com/HyPad%20ISCORMA%20Paper.pdf.
30.
Gunter
,
E.
,
Hinkle
,
J.
, and
Fuller
,
D.
,
1964
, “
The Effects of Speed, Load, and Film Thickness on the Performance of Gas-Lubricated, Tilting-Pad Journal Bearings
,”
ASLE Trans.
,
7
(
4
), pp.
353
365
.
31.
Wang
,
Y.
, and
Kim
,
D.
,
2013
, “
Experimental Identification of Force Coefficients of Large Hybrid Air Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
032503
.
32.
Hikichi
,
K.
,
Isomura
,
K.
,
Saji
,
N.
,
Esashi
,
M.
, and
Tanaka
,
S.
,
2009
, “
Ultra-High-Speed Tape-Type Radial Foil Bearing for Micro Turbomachinery
,”
9th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications
(
PowerMEMS
), Washington, DC, Dec. 1–4, pp. 79–82.http://cap.ee.ic.ac.uk/~pdm97/powermems/2009/pdfs/papers/020_0107.pdf
33.
Moore
,
J.
,
Lerche
,
A.
,
Allison
,
T.
,
Ransom
,
D.
, and
Lubell
,
D.
,
2011
, “
Development of a High Speed Gas Bearing Test Rig to Measure Rotordynamic Force Coefficients
,”
ASME J. Eng. Gas Turbines Power
,
133
(
10
), p.
102504
.
34.
San Andrés
,
L.
, and
Chirathadam
,
T.
,
2012
, “
A Metal Mesh Foil Bearing and a Bump-Type Foil Bearing: Comparison of Performance for Two Similar Size Gas Bearings
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102501
.
35.
De Santiago
,
O.
, and
Solorzano
,
V.
,
2013
, “
Experiments With Scaled Foil Bearings in a Test Compressor Rotor
,”
ASME
Paper No. GT2013-94087.
36.
Hou
,
Y.
,
Xiong
,
L.
, and
Chen
,
C.
,
2004
, “
Experimental Study of a New Compliant Foil Air Bearing With Elastic Support
,”
Tribol. Trans.
,
47
(
2
), pp.
308
311
.
37.
Heshmat
,
H.
,
Walton
,
J.
, and
Hunsberger
,
A.
,
2014
, “
Oil-Free 8 kW High-Speed and High Specific Power Turbogenerator
,”
ASME
Paper No. GT2014-27306.
38.
Ryu
,
K.
, and
Andrés
,
L. S.
,
2012
, “
Effect of Cooling Flow on the Operation of a Hot Rotor-Gas Foil Bearing System
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102511
.
39.
DellaCorte
,
C.
,
Radil
,
K.
,
Bruckner
,
R.
, and
Howard
,
S.
,
2008
, “
Design, Fabrication, and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings
,”
Tribol. Trans.
,
51
(
3
), pp.
254
264
.
40.
Tanaka
,
S.
,
Esashi
,
M.
,
Isomura
,
K.
,
Hikichi
,
K.
,
Endo
,
Y.
, and
Togo
,
S.
,
2007
, “
Hydroinertia Gas Bearing System to Achieve 470 m/s Tip Speed of 10 mm-Diameter Impellers
,”
ASME J. Tribol.
,
129
(
3
), pp.
655
659
.
41.
Hikichi
,
K.
,
Goto
,
S.
,
Togo
,
S.
,
Tanaka
,
S.
, and
Isomura
,
K.
,
2005
, “
Hydroinertia Gas Bearings for Micro Spinners
,”
J. Micromech. Microeng.
,
15
(
9
), pp.
228
232
.
You do not currently have access to this content.