Thermal barrier coatings (TBCs) are ceramic coatings used in gas turbines to lower the base metal temperature. During operation, the TBC may fail through, for example, fatigue. In this study, a TBC system deposited on a Ni-base alloy was tested in tensile bending fatigue. The TBC system was tested as-sprayed and oxidized, and two load levels were used. After interrupting the tests, at 10,000–50,000 cycles, the TBC tested at the lower load had extensive delamination damage, whereas the TBC tested at the higher load was relatively undamaged. At the higher load, the TBC formed vertical cracks which relieved the stresses in the TBC and retarded delamination damage. A finite element (FE) analysis was used to establish a likely vertical crack configuration (spacing and depth), and it could be confirmed that the corresponding stress drop in the TBC should prohibit delamination damage at the higher load.

References

References
1.
Belmonte
,
M.
,
2006
, “
Advanced Ceramic Materials for High Temperature Applications
,”
Adv. Eng. Mater.
,
8
(
8
), pp.
693
703
.
2.
Comassar
,
D. M.
,
1991
, “
Surface Coatings Technology for Turbine Engine Applications
,”
Met. Finish.
,
89
(
3
), pp.
39
44
.http://infohouse.p2ric.org/ref/25/24014.pdf
3.
Miller
,
R. A.
,
1997
, “
Thermal Barrier Coatings for Aircraft Engines: History and Directions
,”
J. Therm. Spray Technol.
,
6
(
1
), pp.
35
42
.
4.
Nelson
,
W. A.
, and
Orenstein
,
R. M.
,
1997
, “
TBC Experience in Land-Based Gas Turbines
,”
J. Therm. Spray Technol.
,
6
(
2
), pp.
176
180
.
5.
Ray
,
A. K.
, and
Goswami
,
B.
,
2004
, “
Applications of Thermal Barrier Coating System in Gas Turbines—A Review
,”
J. Metall. Mater. Sci.
,
46
(
1
), pp.
1
22
.
6.
Stöver
,
D.
, and
Funke
,
C.
,
1999
, “
Directions of the Development of Thermal Barrier Coatings in Energy Applications
,”
J. Mater. Process. Technol.
,
92–93
, pp.
195
202
.
7.
Wortman
,
D. J.
,
Nagaraj
,
B. A.
, and
Duderstadt
,
E. C.
,
1989
, “
Thermal Barrier Coatings for Gas Turbine Use
,”
Mater. Sci. Eng., A
,
120–121
(
Part 2
), pp.
433
440
.
8.
Eriksson
,
R.
,
Gupta
,
M.
,
Broitman
,
E.
,
Jonnalagadda
,
K. P.
,
Nylén
,
P.
, and
Lin Peng
,
R.
,
2015
, “
Stresses and Cracking During Chromia–Spinel–NiO Cluster Formation in TBC Systems
,”
J. Therm. Spray Technol.
,
24
(
6
), pp.
1002
1014
.
9.
Eriksson
,
R.
,
Brodin
,
H.
,
Johansson
,
S.
,
Östergren
,
L.
, and
Li
,
X.-H.
,
2011
, “
Influence of Isothermal and Cyclic Heat Treatments on the Adhesion of Plasma Sprayed Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
205
(23–24), pp.
5422
5429
.
10.
Yang
,
L.
,
Zhou
,
Y. C.
,
Mao
,
W. G.
, and
Liu
,
Q. X.
,
2007
, “
Acoustic Emission Evaluation of the Fracture Behavior of APS-TBCs Subjecting to Bondcoating Oxidation
,”
Surf. Interface Anal.
,
39
(
9
), pp.
761
769
.
11.
Ma
,
X. Q.
,
Cho
,
S.
, and
Takemoto
,
M.
,
2001
, “
Acoustic Emission Source Analysis of Alasma Sprayed Thermal Barrier Coatings During Four-Point Bend Tests
,”
Surf. Coat. Technol.
,
139
(
1
), pp.
55
62
.
12.
Eriksson
,
R.
,
Yuan
,
K.
,
Li
,
X.-H.
, and
Lin Peng
,
R.
,
2014
, “
MCrAlY Coating Design Based on Oxidation–Diffusion Modelling. Part II: Lifing Aspects
,”
Surf. Coat. Technol.
,
253
, pp.
27
37
.
13.
Mao
,
W. G.
,
Wu
,
D. J.
,
Yao
,
W. B.
,
Zhou
,
M.
, and
Lu
,
C.
,
2011
, “
Multiscale Monitoring of Interface Failure of Brittle Coating/Ductile Substrate Systems: A Non-Destructive Evaluation Method Combined Digital Image Correlation With Acoustic Emission
,”
J. Appl. Phys.
,
110
, p.
084903
.
14.
Park
,
J. H.
,
Kim
,
J. S.
, and
Lee
,
K. H.
,
2007
, “
Acoustic Emission Characteristics for Diagnosis of TBC Damaged by High-Temperature Thermal Fatigue
,”
J. Mater. Process. Technol.
,
187–188
, pp.
537
541
.
15.
Renusch
,
D.
,
Echsler
,
H.
, and
Schütze
,
M.
,
2004
, “
Progress in Life Time Modeling of APS-TBC Part II: Critical Strains, Macro-Cracking, and Thermal Fatigue
,”
Mater. High Temp.
,
21
(
2
), pp.
77
86
.
16.
Yang
,
L.
,
Zhou
,
Y. C.
,
Mao
,
W. G.
, and
Lu
,
C.
,
2008
, “
Real-Time Acoustic Emission Testing Based on Wavelet Transform for the Failure Process of Thermal Barrier Coatings
,”
Appl. Phys. Lett.
,
93
, p.
231906
.
17.
Yang
,
L.
,
Zhong
,
Z. C.
,
You
,
J.
,
Zhang
,
Q. M.
,
Zhou
,
Y. C.
, and
Tang
,
W. Z.
,
2013
, “
Acoustic Emission Evaluation of Fracture Characteristics in Thermal Barrier Coatings Under Bending
,”
Surf. Coat. Technol.
,
232
, pp.
710
718
.
18.
Yao
,
W. B.
,
Dai
,
C. Y.
,
Mao
,
W. G.
,
Lu
,
C.
,
Yang
,
L.
, and
Zhou
,
Y. C.
,
2012
, “
Acoustic Emission Analysis on Tensile Failure of Air Plasma-Sprayed Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
206
(
18
), pp.
3803
3807
.
19.
Zhou
,
M.
,
Yao
,
W. B.
,
Yang
,
X. S.
,
Peng
,
Z. B.
,
Li
,
K. K.
,
Dai
,
C. Y.
,
Mao
,
W. G.
,
Zhou
,
Y. C.
, and
Lu
,
C.
,
2014
, “
In-Situ and Real-Time Tests on the Damage Evolution and Fracture of Thermal Barrier Coatings Under Tension: A Coupled Acoustic Emission and Digital Image Correlation Method
,”
Surf. Coat. Technol.
,
240
, pp.
40
47
.
20.
Musalek
,
R.
,
Kovarik
,
O.
,
Medricky
,
J.
,
Curry
,
N.
,
Björklund
,
S.
, and
Nylén
,
P.
,
2015
, “
Fatigue Testing of TBC on Structural Steel by Cyclic Bending
,”
J. Therm. Spray Technol.
,
24
(
1–2
), pp.
168
174
.
21.
Musalek
,
R.
,
Kovarik
,
O.
,
Tomek
,
L.
,
Medricky
,
J.
,
Pala
,
Z.
,
Hausild
,
P.
,
Capek
,
J.
,
Kolarik
,
K.
,
Curry
,
N.
, and
Björklund
,
S.
,
2016
, “
Fatigue Performance of TBCs on Hastelloy X Substrate During Cyclic Bending
,”
J. Therm. Spray Technol.
,
25
(
6
), pp.
231
243
.
22.
Subramanian
,
R.
,
Mori
,
Y.
,
Yamagishi
,
S.
, and
Okazaki
,
M.
,
2015
, “
Thermo-Mechanical Fatigue Failure of Thermal Barrier Coated Superalloy Specimen
,”
Metall. Mater. Trans. A
,
46
(
9
), pp.
3999
4012
.
23.
Obrtlík
,
K.
,
Hutařová
,
S.
,
Čelko
,
L.
,
Juliš
,
M.
,
Podrábský
,
T.
, and
Šulák
,
I.
,
2014
, “
Effect of Thermal Barrier Coating on Low Cycle Fatigue Behavior of Cast Inconel 713LC at 900 °C
,”
Adv. Mater. Res.
,
891–892
, pp.
848
853
.
24.
Hutařová
,
S.
,
Obrtlík
,
K.
,
Juliš
,
M.
,
Čelko
,
L.
,
Hrčková
,
M.
, and
Podrábský
,
T.
,
2014
, “
Degradation of TBC Coating During Low-Cycle Fatigue Tests at High Temperature
,”
Key Eng. Mater.
,
592–593
, pp.
461
464
.
25.
Zhong
,
X.
,
Zhao
,
H.
,
Zhou
,
X.
,
Liu
,
C.
,
Wang
,
L.
,
Shao
,
F.
,
Yang
,
K.
,
Tao
,
S.
, and
Ding
,
C.
,
2014
, “
Thermal Shock Behavior of Toughened Gadolinium Zirconate/YSZ Double-Ceramic-Layered Thermal Barrier Coating
,”
J. Alloys Compd.
,
593
, pp.
50
55
.
26.
Ren
,
X.
, and
Pan
,
W.
,
2014
, “
Mechanical Properties of High-Temperature-Degraded Yttria-Stabilized Zirconia
,”
Acta Mater.
,
69
, pp.
397
406
.
27.
Dwivedi
,
G.
,
Viswanathan
,
V.
,
Sampath
,
S.
,
Shyam
,
A.
, and
Lara-Curzio
,
E.
,
2014
, “
Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging
,”
J. Am. Ceram. Soc.
,
97
(
9
), pp.
2736
2744
.
28.
Hutchinson
,
J. W.
,
1996
, Stresses and Failure Modes in Thin Films and Multilayers, Technical University of Denmark, Copenhagen, Denmark.
You do not currently have access to this content.