The use of multishaft industrial gas turbines is expanding in various industries because of variation in their structure, flexibility, and their appropriate power generation range. In this study, a semi-simplified black-box dynamic modeling has been done for the three-shaft gas turbine MGT-30. Modeling is done in such a way that all the important variables can be calculated and evaluated. One of the important parameters in dynamic modeling of gas turbine is the time lag relevant to the performance properties of sensors and actuators of the system. In this study, in order to measure the transfer function, physical and actual characteristics of the system were applied. Depending on the type of thermocouples (TCs) used, their activation time was eliminated using a lead compensator. In modeling of the system, the functions were related to the implementation of off-design conditions for compliance with the outputs of a real system model, and outputs were presented proportional to the rate and type of changes for each variable. Finally, validation was done by comparing the power-turbine generated power, exhaust gas temperatures downstream of low pressure (LP) turbine, and speeds of LP and high-pressure (HP) turbines with the real values of Qeshm turbogenerator power plant.

References

References
1.
Rowen
,
W. I.
,
1983
, “
Simplified Mathematical Representations of Heavy-Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
105
(
4
), pp.
865
869
.
2.
Rowen
,
W. I.
,
1992
, “
Simplified Mathematical Representations of Single Shaft Gas Turbines in Mechanical Drive Service
,”
ASME
Paper No. 92-GT-22.
3.
Balamurugan
,
S.
,
Xavier
,
R. J.
, and
Jeyakumar
,
A. E.
,
2009
, “
Control of Heavy-Duty Gas Turbine Plants for Parallel Operation Using Soft Computing
,”
Electr. Power Compon. Syst.
,
37
(11), pp.
1275
1287
.http://dx.doi.org/10.1080/15325000902994371
4.
Selvakumar
,
S.
,
Balamurugan
,
S.
, and
Xavier
,
R. J.
,
2013
, “
Development of Controller for Parallel Operation of Gas Turbine Plants
,”
Electr. Power Compon. Syst.
,
41
(1), pp.
100
109
.http://dx.doi.org/10.1080/15325008.2012.732659
5.
Hannett
,
L. N.
, and
Khan
,
A.
,
2013
, “
Combustion Turbine Dynamic Model Validation From Tests
,”
IEEE Trans. Power Syst.
,
8
(
1
), pp.
152
158
.
6.
Jurado
,
F.
, and
Carpio
,
J.
,
2006
, “
Improving Distribution System Stability by Predictive Control of Gas Turbines
,”
Energy Convers. Manage.
,
47
(18–19), pp.
2961
2973
.
7.
Centro
,
P.
,
Egido
,
I.
,
Domingo
,
C.
,
Fernandez
,
F.
,
Reuco
,
L.
, and
Conzalez
,
M.
,
2005
, “
Review of Turbine Models for Power System Stability Studies
,”
Ninth Spanish Portuguese Congress on Electrical Engineering
(
CHLIE
), Marbella, Spain, June 30–July 2.http://aedie.org/9CHLIE-paper-send/368-Centeno.pdf
8.
Ghorbani
,
H.
,
Ghaffari
,
A.
, and
Rahnama
,
M.
,
2008
, “
Constrained Model Predictive Control for a Heavy-Duty Gas Turbine Power Plant
,”
WSEAS Trans. Syst. Control
,
3
(
6
), pp.
507
515
.http://www.wseas.us/e-library/transactions/control/2008/27-418.pdf
9.
Kim
,
J. H.
,
Kim
,
T. S.
, and
Ro
,
S. T.
,
2001
, “
Analysis of the Dynamic Behaviour of Regenerative Gas Turbines
,”
Proc. Inst. Mech. Eng., Part A
,
215
(3), pp.
339
346
. https://doi.org/10.1243/0957650011538569
10.
Tavakoli
,
M. R. B.
,
Vahidi
,
B.
, and
Gawlik
,
W.
,
2009
, “
An Educational Guide to Extract the Parameters of Heavy Duty Gas Turbines Model in Dynamic Studies Based on Operational Data
,”
IEEE Trans. Power Syst.
,
24
(
3
), pp.
1366
1374
.
11.
Enalou
,
H. B.
, and
Soreshjani
,
E. A.
,
2014
, “
A Detailed Governor-Turbine Model for Heavy-Duty Gas Turbines With a Careful Scrutiny of Governor Features
,”
IEEE Trans. Power Syst.
,
30
(
3
), pp.
1435
1441
.
12.
Guda
,
S. R.
,
Wang
,
C.
, and
Nehrir
,
M. H.
,
2006
, “
Modeling of Micro-Turbine Power Generation Systems
,”
Electr. Power Compon. Syst.
,
34
(
9
), pp.
1027
1046
.
13.
Hajagos
,
L. M.
, and
Berube
,
G. R.
,
2001
, “
Utility Experience With Gas Turbine Testing and Modeling
,”
IEEE
Power Engineering Society Winter Meeting
, Columbus, OH, Jan. 28–Feb. 1, pp.
671
677
.
14.
DeMello
,
F. P.
,
1994
, “
Dynamic Models for Combined Cycle Plants in Power System Studies
,”
IEEE Trans. Power Syst.
,
9
(
3
), pp.
1698
1708
.
15.
Suzaki
,
S.
,
Kawata
,
K.
,
Sekoguchi
,
M.
, and
Goto
,
M.
,
2000
, “
Mathematical Model for a Combined Cycle Plant and Its Implementation in an Analogue Power System Simulator
,”
IEEE
Power Engineering Society Winter Meeting
, Singapore, Jan. 23–27, pp.
416
421
.
16.
Kee
,
S. K.
,
Milanovic
,
J. V.
, and
Hughs
,
F. M.
,
2008
, “
Overview and Comparative Analysis of Gas Turbine Models for System Stability Studies
,”
IEEE Trans. Power Syst.
,
23
(
1
), pp.
108
117
.
17.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Dambrosio
,
L.
,
2002
, “
One-Step-Ahead Adaptive Control for Gas Turbine Power Plants
,”
ASME J. Dyn. Syst. Meas. Control
,
124
(
2
), pp.
341
348
.
18.
Comporeale
,
S. M.
,
Fotunato
,
B.
, and
Mastrovito
,
M.
,
2006
, “
A Modular Code for Real Time Dynamic Simulation of Gas Turbines in Simulink
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
506
516
.
19.
Zhang
,
N.
, and
Cai
,
R.
,
2002
, “
Analytical Solutions and Typical Characteristics of Part-Load Performances of Single Shaft Gas Turbine and Its Cogeneration
,”
Energy Convers. Manage.
,
43
(9–12), pp.
1323
1337
.
20.
Wang
,
W.
,
Cai
,
R.
, and
Zhang
,
N.
,
2004
, “
General Characteristics of Single Shaft Microturbine Set at Variable Speed Operation and Its Optimization
,”
Appl. Therm. Eng.
,
24
(
13
), pp.
1851
1863
.
21.
Malinowski
,
L.
, and
Lewandowska
,
M.
,
2013
, “
Analytical Model-Based Energy and Exergy Analysis of a Gas Micro-Turbine at Part-Load Operation
,”
Appl. Therm. Eng.
,
57
(1–2), pp.
125
132
.
22.
Badami
,
M.
,
Ferrero
,
M. G.
, and
Portoraro
,
A.
,
2015
, “
Dynamic Parsimonious Model and Experimental Validation of a Gas Micro-Turbine at Part-Load Conditions
,”
Appl. Therm. Eng.
,
75
, pp.
14
23
.
23.
Kee
,
S. K.
,
Milanovic
,
J. V.
, and
Hughs
,
F. M.
,
2011
, “
Validated Models for Gas Turbines Based on Thermodynamics Relationships
,”
IEEE Trans. Power Syst.
,
26
(
1
), pp.
270
281
.
24.
Aklilu
,
B. T.
, and
Gilani
,
S. I.
,
2010
, “
Mathematical Modeling and Simulation of a Cogeneration Plant
,”
Appl. Therm. Eng.
,
30
(
16
), pp.
2545
2554
.
25.
Hglind
,
F.
, and
Elmegaard
,
B.
,
2009
, “
Methodologies for Predicting the Part-Load Performance an Aero-Derivative Gas Turbines
,”
Energy
,
34
(
10
), pp.
1484
1492
.
26.
Lee
,
J. J.
,
Kang
,
D. W.
, and
Kim
,
T. S.
,
2001
, “
Development of a Gas Turbine Performance Analysis Program and Its Application
,”
Energy
,
36
(8), pp.
5274
5285
.
27.
Kim
,
T. S.
, and
Hwang
,
S. H.
,
2006
, “
Part Load Performance Analysis of Recuperated Gas Turbines Considering Engine Configuration and Operation Strategy
,”
Energy
,
31
(2–3), pp.
260
277
.
28.
Saravanamuttoo
,
H. I. H.
, and
Maclsaac
,
B. D.
,
1983
, “
Thermodynamic Models for Pipeline Gas Turbine Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
105
(
4
), pp.
875
884
.
29.
Zhu
,
P.
, and
Saravanamuttoo
,
H. I. H.
,
1992
, “
Simulation of an Advanced Twin-Spool Industrial Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
114
(2), pp.
181
185
.
30.
Cohen
,
H.
,
Rogers
,
G. F. C.
, and
Saravanamuttoo
,
H. I. H.
,
1996
,
Gas Turbine Theory
,
Pearson Education
, North York, ON,
Canada
.
31.
Mirza-Baig
,
F. S.
, and
Saravanamuttoo
,
H. I. H.
,
1991
, “
Off-Design Performance Prediction of Turbofans Using Gasdynamics
,”
ASME
Paper No. 91-GT-389.
32.
Bozzi
,
L.
,
Crosa
,
G.
, and
Trucco
,
A.
,
2003
, “
Simplified Simulation Block Diagram of Twin-Shaft Gas Turbines
,”
ASME
Paper No. GT2003-38679.
33.
Vahidi
,
B.
,
Tvakoli
,
M. R. B.
, and
Gawlik
,
W.
,
2007
, “
Determination Parameters of Turbine's Model Using Heat Balance Data on Steam Power Unit for Educational Purposes
,”
IEEE Trans. Power Syst.
,
22
(
4
), pp.
1547
1553
.
34.
Process and Control Engineering Unit, 2015, “
Qeshm Turbo Generator Data Archive
,” Mapna Turbine Engineering and Manufacturing Company, Karaj, Iran.
35.
Coughanowr
,
D. R.
, and
LeBlanc
,
S. E.
,
2009
,
Process System Analysis and Control
,
3rd ed.
,
McGraw-Hill
, New York.
36.
Stephnopoulos
,
G.
,
1984
,
Chemical Process Control: An Introduction to Theory and Practice
,
PTR Prentice-Hall
, Upper Saddle River, NJ.
You do not currently have access to this content.