Methane and ethane are the two main components of natural gas and typically constitute more than 95% of it. In this study, a mixture of 90% CH4/10% C2H6 diluted in 99% Ar was studied at fuel lean (equiv. ratio = 0.5) conditions, for pressures around 1, 4, and 10 atm. Using laser absorption diagnostics, the time histories of CO and H2O were recorded between 1400 and 1800 K. Water is a final product from combustion, and its formation is a good marker of the completion of the combustion process. Carbon monoxide is an intermediate combustion species, a good marker of incomplete/inefficient combustion, as well as a regulated pollutant for the gas turbine industry. Measurements such as these species time histories are important for validating and assessing chemical kinetics models beyond just ignition delay times and laminar flame speeds. Time-history profiles for these two molecules were compared to a state-of-the-art detailed kinetics mechanism as well as to the well-established GRI 3.0 mechanism. Results show that the H2O profile is accurately reproduced by both models. However, discrepancies are observed for the CO profiles. Under the conditions of this study, the CO profiles typically increase rapidly after an induction time, reach a maximum, and then decrease. This maximum CO mole fraction is often largely over-predicted by the models, whereas the depletion rate of CO past this peak is often over-estimated for pressures above 1 atm.

References

References
1.
de Vries
,
J.
, and
Petersen
,
E. L.
,
2007
, “
Autoignition of Methane-Based Fuel Blends Under Gas Turbine Conditions
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3163
3171
.
2.
Petersen
,
E. L.
,
Hall
,
J. M.
,
Smith
,
S. D.
,
de Vries
,
J.
,
Amadio
,
A. R.
, and
Crofton
,
M. W.
,
2007
, “
Ignition of Lean Methane-Based Fuel Blends at Gas Turbine Pressures
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
937
944
.
3.
Cooke
,
D. F.
, and
Alan Williams
,
A.
,
1975
, “
Shock Tube Studies of Methane and Ethane Oxidation
,”
Combust. Flame
,
24
, pp.
245
256
.
4.
Spadaccini
,
L. J.
, and
Colket
,
M. B.
,
1994
, “
Ignition Delay Characteristics of Methane Fuels
,”
Prog. Energy Combust. Sci.
,
20
(
5
), pp.
431
460
.
5.
Lamoureux
,
N.
, and
Paillard
,
C.-E.
,
2003
, “
Natural Gas Ignition Delay Times Behind Reflected Shock Waves: Application to Modelling and Safety
,”
Shock Waves
,
13
(
1
), pp.
57
68
.
6.
Herzler
,
J.
, and
Naumann
,
C.
,
2009
, “
Shock-Tube Study of the Ignition of Methane/Ethane/Hydrogen Mixtures With Hydrogen Contents From 0% to 100% at Different Pressures
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
213
220
.
7.
Aul
,
C. J.
,
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Curran
,
H. J.
, and
Petersen
,
E. L.
,
2013
, “
Ignition and Kinetic Modeling of Methane and Ethane Fuel Blends With Oxygen: A Design of Experiments Approach
,”
Combust. Flame
,
160
(
7
), pp.
1153
1167
.
8.
Ravi
,
S.
,
Sikes
,
T. G.
,
Morones
,
A.
,
Keesee
,
C. L.
, and
Petersen
,
E. L.
,
2015
, “
Comparative Study on the Laminar Flame Speed Enhancement of Methane With Ethane and Ethylene Addition
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
679
686
.
9.
Sivaramakrishnan
,
R.
,
Brezinsky
,
K.
,
Dayma
,
G.
, and
Dagaut
,
P.
,
2007
, “
High Pressure Effects on the Mutual Sensitization of the Oxidation of NO and CH4–C2H6 Blends
,”
Phys. Chem. Chem. Phys.
,
9
(
31
), pp.
4230
4244
.
10.
Rasmussen
,
C. L.
,
Jakobsen
,
J. G.
, and
Glarborg
,
P.
,
2008
, “
Experimental Measurements and Kinetic Modeling of CH4/O2+- and CH4/C2H6/O2 Conversion at High Pressure
,”
Int. J. Chem. Kinet.
,
40
(
12
), pp.
778
807
.
11.
Mathieu
,
O.
,
Mulvihill
,
C.
, and
Petersen
,
E. L.
,
2017
, “
Assessment of Modern Detailed Kinetics Mechanisms to Predict CO Formation From Methane Combustion Using Shock Tube/Laser Absorption Measurements
,” Fuel, in press.
12.
Petersen
,
E. L.
,
Rickard
,
M. J. A.
,
Crofton
,
M. W.
,
Abbey
,
E. D.
,
Traum
,
M. J.
, and
Kalitan
,
D. M.
,
2005
, “
A Facility for Gas-and Condensed-Phase Measurements Behind Shock Waves
,”
Meas. Sci. Technol.
16
(
9
), pp.
1716
1729
.
13.
Vivanco
,
J. E.
,
2014
, “
A New Shock-Tube Facility for the Study of High-Temperature Chemical Kinetics
,” Master's thesis, Texas A & M University, College Station, TX.
14.
Rothman
,
L. S.
,
Jacquemart
,
D.
,
Barbe
,
A.
,
Chris Benner
,
D.
,
Birk
,
M.
,
Brown
,
L. R.
,
Carleer
,
M. R.
,
Chackerian
,
C.
, Jr.
,
Chance
,
K.
,
Coudert
,
L. H.
, and
Dana
,
V.
,
2005
, “
The HITRAN 2004 Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiative Transfer
,
96
(
2
), pp.
139
204
.
15.
Ren
,
W.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
, and
Farooq
,
A.
,
2012
, “
CO Concentration and Temperature Sensor for Combustion Gases Using Quantum-Cascade Laser Absorption Near 4.7 μm
,”
Appl. Phys. B: Lasers Opt.
,
107
(
3
), pp.
1
12
.
16.
Li
,
H.
,
Farooq
,
A.
,
Jeffries
,
J. B.
, and
Hanson
,
R. K.
,
2008
, “
Diode Laser Measurements of Temperature-Dependent Collisional-Narrowing and Broadening Parameters of Ar-Perturbed H2O Transitions at 1391.7 and 1397.8 nm
,”
J. Quant. Spectrosc. Radiative Transfer
,
109
(
1
), pp.
132
143
.
17.
Mathieu
,
O.
,
Mulvihill
,
C.
, and
Petersen
,
E. L.
,
2017
, “
Shock Tube Water Time-Histories and Ignition Delay Time Measurements for H2S Near Atmospheric Pressure
,”
Proc. Combust. Inst.
36
(
3
), pp.
4019
4027
.
18.
Reaction Design
,
2013
, “
CHEMKIN-PRO 15131
,” Reaction Design, San Diego, CA.
19.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, 2017, “
GRI-Mech
,” Gas Research Institute, Des Plaines, IL, accessed Aug. 19, 2017, http://www.me.berkeley.edu/gri_mech/
20.
Kéromnès
,
A.
,
Metcalfe
,
W. K.
,
Heufer
,
K. A.
,
Donohoe
,
N.
,
Das
,
A. K.
,
Sung
,
C.-J.
,
Herzler
,
J.
,
Naumann
,
C.
,
Griebel
,
P.
,
Mathieu
,
O.
,
Krejci
,
M. C.
,
Petersen
,
E. L.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
,
2013
, “
An Experimental and Detailed Chemical Kinetic Modeling Study of Hydrogen and Syngas Mixture Oxidation at Elevated Pressures
,”
Combust. Flame
,
160
(
6
), pp.
995
1011
.
21.
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Ahmed
,
S. S.
, and
Curran
,
H. J.
,
2013
, “
A Hierarchical and Comparative Kinetic Modeling Study of C1–C2 Hydrocarbon and Oxygenated Fuels
,”
Int. J. Chem. Kinet.
,
45
(
10
), pp.
638
675
.
22.
Burke
,
S. M.
,
Burke
,
U.
,
McDonagh
,
R.
,
Mathieu
,
O.
,
Osorio
,
I.
,
Keesee
,
C.
,
Morones
,
A.
,
Petersen
,
E. L.
,
Wang
,
W.
,
DeVerter
,
T. A.
,
Oehlschlaeger
,
M. A.
,
Rhodes
,
B.
,
Hanson
,
R. K.
,
Davidson
,
D. F.
,
Weber
,
B. W.
,
Sung
,
C.-J.
,
Santner
,
J.
,
Ju
,
Y.
,
Haas
,
F. M.
,
Dryer
,
F. L.
,
Volkov
,
E. N.
,
Nilsson
,
E. J. K.
,
Konnov
,
A. A.
,
Alrefae
,
M.
,
Khaled
,
F.
,
Farooq
,
A.
,
Dirrenberger
,
P.
,
Glaude
,
P.-A.
,
Battin-Leclerc
,
F.
, and
Curran
,
H. J.
,
2015
, “
An Experimental and Modeling Study of Propene Oxidation. Part 2: Ignition Delay Time and Flame Speed Measurements
,”
Combust. Flame
,
162
(
2
), pp.
296
314
.
23.
Burke
,
S. M.
,
Metcalfe
,
W.
,
Herbinet
,
O.
,
Battin-Leclerc
,
F.
,
Haas
,
F. M.
,
Santner
,
J.
,
Dryer
,
F. L.
, and
Curran
,
H. J.
,
2014
, “
An Experimental and Modeling Study of Propene Oxidation—Part 1: Speciation Measurements in Jet-Stirred and Flow Reactors
,”
Combust. Flame
,
161
(
11
), pp.
2765
2784
.
24.
Li
,
Y.
,
Zhou
,
C.-W.
,
Somers
,
K. P.
,
Zhang
,
K.
, and
Curran
,
H. J.
,
2017
, “
The Oxidation of 2-Butene: A High Pressure Ignition Delay, Kinetic Modeling Study and Reactivity Comparison With Isobutene and 1-Butene
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
403
411
.
25.
Zhou
,
C.-W.
,
Li
,
Y.
,
O'Connor
,
E.
,
Somers
,
K. P.
,
Thion
,
S.
,
Keesee
,
C.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
DeVerter
,
T. A.
,
Oehlschlaeger
,
M. A.
,
Kukkadapu
,
G.
,
Sung
,
C.-J.
,
Alrefae
,
M.
,
Khaled
,
F.
,
Farooq
,
A.
,
Dirrenberger
,
P.
,
Glaude
,
P.-A.
,
Battin-Leclerc
,
F.
,
Santner
,
J.
,
Ju
,
Y.
,
Held
,
T.
,
Haas
,
F. M.
,
Dryer
,
F. L.
, and
Curran
,
H. J.
,
2016
, “
A Comprehensive Experimental and Modeling Study of Isobutene Oxidation
,”
Combust. Flame
,
167
, pp.
353
379
.
26.
Nilsson
,
E. J. K.
, and
Konnov
,
A. A.
,
2016
, “
Role of HOCO Chemistry in Syngas Combustion
,”
Energy Fuels
,
30
(
3
), pp.
2443
2457
.
27.
Weston
,
R. E.
, Jr.
,
Nguyen
,
T. L.
,
Stanton
,
J. F.
, and
Barker
,
J. R.
,
2013
, “
O + CO Reaction Rates and H/D Kinetic Isotope Effects: Master Equation Models With Ab Initio SCTST Rate Constants
,”
J. Phys. Chem. A
,
117
(
5
), pp.
821
835
.
28.
Nguyen
,
T. L.
,
Xue
,
B. C.
,
Weston
,
R. E.
, Jr.
,
Barker
,
J. R.
, and
Stanton
,
J. F.
,
2012
, “
Reaction of HO With CO: Tunneling is Indeed Important
,”
J. Phys. Chem. Lett.
,
3
(
11
), pp.
1549
1553
.
29.
Yu
,
H.-G.
, and
Muckerman
,
J. T.
,
2006
, “
Quantum Molecular Dynamics Study of the Reaction of O2 With HOCO
,”
J. Phys. Chem. A
,
110
(
16
), pp.
5312
5316
.
30.
Yu
,
H.-G.
,
Muckerman
,
J. T.
, and
Francisco
,
J. S.
,
2005
, “
Direct Ab Initio Dynamics Study of the OH + HOCO Reaction
,”
J. Phys. Chem. A
,
109
(
23
), pp.
5230
5236
.
31.
Yu
,
H.-G.
,
Poggi
,
G.
,
Francisco
,
J. S.
, and
Muckerman
,
J. T.
,
2008
, “
Energetics and Molecular Dynamics of the Reaction of HOCO With HO2 Radicals
,”
J. Chem. Phys.
,
129
(
21
), p.
214307
.
32.
Yu
,
H.-G.
, and
Francisco
,
J. S.
,
2008
, “
Energetics and Kinetics of the Reaction of HOCO With Hydrogen Atoms
,”
J. Chem. Phys.
,
128
(
24
), p.
244315
.
33.
Yu
,
H.-G.
,
Muckerman
,
J. T.
, and
Francisco
,
J. S.
,
2007
, “
Quantum Force Molecular Dynamics Study of the Reaction of O Atoms With HOCO
,”
J. Chem. Phys.
,
127
(
9
), p.
094302
.
34.
Yu
,
H.-G.
, and
Francisco
,
J. S.
,
2009
, “
Theoretical Study of the Reaction of CH3 With HOCO Radicals
,”
J. Phys. Chem. A
,
113
(
16
), pp.
3844
3849
.
35.
Petersen
,
E. L.
,
1998
, “
A Shock Tube and Diagnostics for Chemistry Measurements at Elevated Pressures With Application to Methane Ignition
,” Ph.D. thesis, Stanford University, Stanford, CA.
36.
Li
,
J.
,
Zhao
,
Z. W.
,
Kazakov
,
A.
,
Chaos
,
M.
,
Dryer
,
F. L.
, and
Scire
,
J. J.
,
2007
, “
A Comprehensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion
,”
Int. J. Chem. Kinet.
39
(
3
), pp.
109
136
.
37.
Krasnoperov
,
L. N.
,
Chesnokov
,
E. N.
,
Stark
,
H.
, and
Ravishankara
,
A. R.
,
2004
, “
Unimolecular Dissociation of Formyl Radical, HCO → H + CO, Studied Over 1-100 Bar Pressure Range
,”
J. Phys. Chem. A
,
108
(
52
), pp.
11526
11536
.
You do not currently have access to this content.