A combined organic Rankine cycle (ORC) was proposed for both engine coolant energy recovery (CER) and exhaust energy recovery (EER), and it was applied to a gasoline direct injection (GDI) engine to verify its waste heat recovery (WHR) potential. After several kinds of organic working medium were compared, R123 was selected as the working fluid of this ORC. Two cycle modes, low-temperature cycle and high-temperature cycle, were designed according to the evaporation way of working fluid. The working fluid is evaporated by coolant heat in low-temperature cycle but by exhaust heat in high-temperature cycle. The influence factors of cycle performance and recovery potential of engine waste heat energy were investigated by cycle simulation and parametric analysis. The results show that recovery efficiency of waste heat energy is influenced by both engine operating conditions and cycle parameters. At 2000 r/min, the maximum recovery efficiency of waste heat energy is 7.3% under 0.2 MPa brake mean effective pressure (BMEP) but 10.7% under 1.4 MPa BMEP. With the combined ORC employed, the fuel efficiency improvement of engine comes up to 4.7% points under the operations of 2000 r/min and 0.2 MPa BMEP, while it further increases to 5.8% points under the operations of 2000 r/min and 1.4 MPa BMEP. All these indicate that the combined ORC is suitable for internal combustion (IC) engine WHR.

References

1.
Zhao
,
D.
, and
Chew
,
Y.
,
2012
, “
Energy Harvesting From a Convection-Driven Rijke–Zhao Thermoacoustic Engine
,”
J. Appl. Phys.
,
112
(
11
), p.
114507
.
2.
Tang
,
Q. J.
,
Fu
,
J. Q.
,
Liu
,
J. P.
,
Zhou
,
F.
, and
Duan
,
X. B.
,
2016
, “
Study of Energy-Saving Potential of Electronically Controlled Turbocharger (ECT) for IC Engine Exhaust Gas Energy Recovery
,”
ASME J. Eng. Gas Turbines Power
,
138
(
11
), p.
112805
.
3.
Zhao
,
D.
,
2013
, “
Waste Thermal Energy Harvesting From a Convection-Driven Rijke–Zhao Thermo-Acoustic-Piezo System
,”
Energy Convers. Manage.
,
66
, pp.
87
97
.
4.
Su
,
J. Y.
,
Xu
,
M.
,
Li
,
T.
,
Gao
,
Y.
, and
Wang
,
J. S.
,
2014
, “
Combined Effects of Cooled EGR and a Higher Geometric Compression Ratio on Thermal Efficiency Improvement of a Downsized Boosted Spark-Ignition Direct-Injection Engine
,”
Energy Convers. Manage.
,
78
, pp.
65
73
.
5.
Irimescu
,
A.
,
Marchitto
,
L.
,
Merola
,
S. S.
,
Tornatore
,
C.
, and
Valentino
,
G.
,
2015
, “
Combustion Process Investigations in an Optically Accessible DISI Engine Fuelled With n-Butanol During Part Load Operation
,”
Renewable Energy
,
77
, pp.
363
376
.
6.
Liu
,
J. P.
,
Fu
,
J. Q.
,
Feng
,
R. H.
, and
Zhu
,
G. H.
,
2013
, “
Effects of Working Parameters on Gasoline Engine Exergy Balance
,”
J. Cent. South Univ.
,
20
(
7
), pp.
1938
1946
.
7.
Liu
,
J. P.
,
Fu
,
J. Q.
,
Ren
,
C. Q.
,
Wang
,
L. J.
,
Xu
,
Z. X.
, and
Deng
,
B. L.
,
2013
, “
Comparison and Analysis of Engine Exhaust Gas Energy Recovery Potential Through Various Bottom Cycles
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1219
1234
.
8.
Fu
,
J. Q.
,
Deng
,
B. L.
,
Liu
,
J. P.
,
Wang
,
L. J.
,
Xu
,
Z. X.
,
Yang
,
J.
, and
Shu
,
G. Q.
,
2014
, “
Study of SI Engine Fueled With Methanol Vapor and Dissociation Gas Based on Exhaust Heat Dissociating Methanol
,”
Energy Convers. Manage.
,
79
, pp.
213
223
.
9.
Kim
,
H. J.
,
Moon
,
J. H.
, and
Kim
,
Y. H.
,
2015
, “
Design and Testing of an Algebraic Scroll Expander for Power Generation From a Waste Heat Recovery System
,”
Proc. Inst. Mech. Eng.
, Part A,
229
(
8
), pp.
1019
1031
.
10.
Shu
,
G. Q.
,
Wang
,
X.
,
Tian
,
H.
,
Liang
,
Y. C.
,
Liu
,
Y.
, and
Liu
,
P.
,
2015
, “
Analysis of an Electricity-Cooling Cogeneration System for Waste Heat Recovery of Gaseous Fuel Engines
,”
Sci. China Technol. Sci.
,
58
(
1
), pp.
37
46
.
11.
Fu
,
J. Q.
,
Tang
,
Q. J.
,
Liu
,
J. P.
,
Deng
,
B. L.
,
Yang
,
J.
, and
Feng
,
R. H.
,
2014
, “
A Combined Air Cycle Used for IC Engine Supercharging Based on Waste Heat Recovery
,”
Energy Convers. Manage.
,
87
, pp.
86
95
.
12.
He
,
M. G.
,
Zhang
,
X. X.
,
Zeng
,
K.
, and
Gao
,
K.
,
2011
, “
A Combined Thermodynamic Cycle Used for Waste Heat Recovery of Internal Combustion Engine
,”
Energy
,
36
(
12
), pp.
6821
6829
.
13.
Shu
,
G. Q.
,
Zhao
,
J.
,
Tian
,
H.
,
Liang
,
X. Y.
, and
Wei
,
H. Q.
,
2012
, “
Parametric and Exergetic Analysis of Waste Heat Recovery System Based on Thermoelectric Generator and Organic Rankine Cycle Utilizing R123
,”
Energy
,
45
(
1
), pp.
806
816
.
14.
Yang
,
F. B.
,
Dong
,
X. R.
,
Zhang
,
H. G.
,
Wang
,
Z.
,
Yang
,
K.
,
Zhang
,
J.
,
Wang
,
E. H.
,
Liu
,
H.
, and
Zhao
,
G. Y.
,
2014
, “
Performance Analysis of Waste Heat Recovery With a Dual Loop Organic Rankine Cycle (ORC) System for Diesel Engine Under Various Operating Conditions
,”
Energy Convers. Manage.
,
80
, pp.
243
255
.
15.
Vaja
,
I.
, and
Gambarotta
,
A.
,
2010
, “
Internal Combustion Engine (ICE) Bottoming With Organic Rankine Cycle (ORCs)
,”
Energy
,
35
(
2
), pp.
1084
1093
.
16.
Yu
,
G. P.
,
Shu
,
G. Q.
,
Tian
,
H.
,
Wei
,
H. Q.
, and
Liu
,
L.
,
2013
, “
Simulation and Thermodynamic Analysis of a Bottoming Organic Rankine Cycle (ORC) of Diesel Engine (DE)
,”
Energy
,
51
, pp.
281
290
.
17.
Roy
,
J. P.
,
Mishra
,
M. K.
, and
Misra
,
A.
,
2010
, “
Parametric Optimization and Performance Analysis of a Waste Heat Recovery System Using Organic Rankine Cycle
,”
Energy
,
35
(
12
), pp.
5049
5062
.
18.
Fu
,
J. Q.
,
Liu
,
J. P.
,
Xu
,
Z. X.
,
Deng
,
B. L.
, and
Liu
,
Q.
,
2015
, “
An Approach of IC Engine Coolant Energy Recovery Based on Low-Temperature Organic Rankine Cycle
,”
J. Cent. South Univ.
,
22
(
2
), pp.
727
734
.
19.
White
,
M.
, and
Sayma
,
A. I.
,
2015
, “
System and Component Modelling and Optimisation for an Efficient 10 kWe Low-Temperature Organic Rankine Cycle Utilising a Radial Inflow Expander
,”
Proc. Inst. Mech. Eng., Part A
,
229
(
7
), pp.
795
809
.
20.
Bartela
,
Ł.
,
Kotowicz
,
J.
,
Kubiczek
,
H.
,
Skorek-Osikowska
,
A.
, and
Brzeczek
,
M.
,
2015
, “
Thermodynamic and Economical Analysis of the ORC Module Application to an Existing Combined Heat and Power Unit With the Backpressure Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
229
(
6
), pp.
613
627
.
21.
Drescher
,
U.
, and
Bruggemann
,
D.
,
2007
, “
Fluid Selection for the Organic Rankine Cycle (ORC) in Biomass Power and Heat Plants
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
223
228
.
22.
Liu
,
B. T.
,
Chien
,
K. H.
, and
Wang
,
C. C.
,
2004
, “
Effect of Working Fluids on Organic Rankine Cycle for Waste Heat Recovery
,”
Energy
,
29
(
8
), pp.
1207
1217
.
23.
Hung
,
T. C.
,
2001
, “
Waste Heat Recovery of Organic Rankine Cycle Using Dry Fluids
,”
Energy Convers. Manage.
,
42
(
5
), pp.
539
553
.
24.
Bao
,
J. J.
, and
Li
,
Z.
,
2013
, “
A Review of Working Fluid and Expander Selections for Organic Rankine Cycle
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
325
342
.
25.
Fu
,
J. Q.
,
Liu
,
J. P.
,
Ren
,
C. Q.
,
Wang
,
L. J.
,
Deng
,
B. L.
, and
Xu
,
Z. X.
,
2012
, “
An Open Steam Power Cycle Used for IC Engine Exhaust Gas Energy Recovery
,”
Energy
,
44
(
1
), pp.
544
554
.
26.
Li
,
K. Y.
, and
Lu
,
X. S.
,
1993
,
Vane Pumps and Motors
,
Mechanical Industry Press
,
Beijing, China
(in Chinese).
27.
Cipollone
,
R.
,
Di Battista
,
D.
,
Perosino
,
A.
, and
Bettoja
,
F.
,
2016
, “
Waste Heat Recovery by an Organic Rankine Cycle for Heavy Duty Vehicles
,”
SAE
Technical Paper No. 2016-01-0234.
28.
Teng
,
H.
, and
Regner
,
G.
,
2009
, “
Improving Fuel Economy for HD Diesel Engines With WHR Rankine Cycle Driven by EGR Cooler Heat Rejection
,”
SAE
Technical Paper No. 2009-01-2913.
29.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
30.
Payri
,
F.
,
Olmeda
,
P.
,
Martín
,
J.
, and
Carreño
,
R.
,
2015
, “
Experimental Analysis of the Global Energy Balance in a DI Diesel Engine
,”
Appl. Therm. Eng.
,
89
, pp.
545
557
.
You do not currently have access to this content.