The effect of the purge flow, engine-like blade pressure field, and mainstream flow coefficient are studied experimentally for a single and double lip rim seal. Compared to the single lip, the double lip seal requires less purge flow for similar levels of cavity seal effectiveness. Unlike the double lip seal, the single lip seal is sensitive to overall Reynolds number, the addition of a simulated blade pressure field, and large-scale nonuniform ingestion. In the case of both seals, unsteady pressure variations attributed to shear layer interaction between the mainstream and rim seal flows appear to be important for ingestion at off-design flow coefficients. The double lip seal has both a weaker vane pressure field in the rim seal cavity and a smaller difference in seal effectiveness across the lower lip than the single lip seal. As a result, the double lip seal is less sensitive in the rotor–stator cavity to changes in shear layer interaction and the effects of large-scale circumferentially nonuniform ingestion. However, the reduced flow rate through the double lip seal means that the outer lip has increased sensitivity to shear layer interactions. Overall, it is shown that seal performance is driven by both the vane/blade pressure field and the gradient in seal effectiveness across the inner lip. This implies that accurate representation of both, the pressure field and the mixing due to shear layer interaction, would be necessary for more reliable modeling.

References

References
1.
Bayley
,
F. J.
, and
Owen
,
J. M.
,
1970
, “
The Fluid Dynamics of a Shrouded Disk System With a Radial Outflow of Coolant
,”
J. Eng. Power
,
92
(
3
), pp.
335
341
.
2.
Phadke
,
U.
, and
Owen
,
J.
,
1983
, “
An Investigation of Ingress for an ‘Air-Cooled’ Shrouded Rotating Disk System With Radial-Clearance Seals
,”
J. Eng. Power
,
105
(
1
), pp.
178
183
.
3.
Phadke
,
U.
, and
Owen
,
J.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor–Stator Systems—Part 1: The Behavior of Simple Shrouded Rotating-Disk Systems in a Quiescent Environment
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
98
105
.
4.
Bhavnani
,
S. H.
,
Khodadadi
,
J. M.
,
Goodling
,
J. S.
, and
Waggott
,
J.
,
1992
, “
An Experimental Study of Fluid Flow in Disk Cavities
,”
ASME J. Turbomach.
,
114
(
2
), pp.
454
461
.
5.
Abe
,
T.
,
Kikuchi
,
J.
, and
Takeuchi
,
H.
,
1979
, “
An Investigation of Turbine Disk Cooling (Experimental Investigation and Observation of Hot Gas Flow Into a Wheel Space)
,”
13th International Congress on Combustion Engines
, Vienna, Austria, May 7–10, Paper No. GT-30.http://ci.nii.ac.jp/naid/80000465275
6.
Phadke
,
U.
, and
Owen
,
J.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor–Stator Systems—Part 2: The Performance of Simple Seals in a Quasi-Axisymmetric External Flow
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
106
112
.
7.
Phadke
,
U.
, and
Owen
,
J.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor–Stator Systems—Part 3: The Effect of Nonaxisymmetric External Flow on Seal Performance
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
113
117
.
8.
Graber
,
D.
,
Daniels
,
W.
, and
Johnson
,
B.
,
1987
, “
Disk Pumping Test
,” Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, OH, Technical Report No.
AFWAL-TR-87-2050
.http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA187199
9.
Dadkhah
,
S.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
1992
, “
Performance of Radial Clearance Rim Seals in Upstream and Downstream Rotor–Stator Wheelspaces
,”
ASME J. Turbomach.
,
114
(
2
), pp.
439
445
.
10.
Bohn
,
D.
,
Johann
,
E.
, and
Kruger
,
U.
,
1995
, “
Experimental and Numerical Investigations of Aerodynamic Aspects of Hot Gas Ingestion in Rotor–Stator Systems With Superimposed Cooling Mass Flow
,”
ASME
Paper No. 95-GT-143.
11.
Zhou
,
D. W.
,
Roy
,
R. P.
,
Wang
,
C.-Z.
, and
Glahn
,
J. A.
,
2011
, “
Main Gas Ingestion in a Turbine Stage for Three Rim Cavity Configurations
,”
ASME J. Turbomach.
,
133
(
3
), p.
031023
.
12.
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Ingestion Into the Upstream Wheelspace of an Axial Turbine Stage
,”
ASME J. Turbomach.
,
116
(
2
), pp.
327
332
.
13.
Bohn
,
D.
,
Rudzinski
,
B.
, and
Surken
,
N.
,
2000
, “
Experimental and Numerical Investigation of the Influence of Rotor Blades on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage
,”
ASME
Paper No. 2000-GT-0284.
14.
Bohn
,
D.
,
Rudzinski
,
B.
, and
Surken
,
N.
,
1999
, “
Influence of Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine
,”
ASME
Paper No. 99-GT-248.
15.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2003
, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.
16.
Sangan
,
C. M.
,
Lalwani
,
Y.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2011
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part 2: Rotationally-Induced Ingress
,”
ASME
Paper No. GT2011-45310.
17.
Balasubramanian
,
J.
,
Pathak
,
P. S.
,
Thiagarajan
,
J. K.
,
Singh
,
P.
,
Roy
,
R. P.
, and
Mirzamoghadam
,
A. V.
,
2015
, “
Experimental Study of Ingestion in the Rotor–Stator Disk Cavity of a Subscale Axial Turbine Stage
,”
ASME J. Turbomach.
,
137
(
9
), p.
091010
.
18.
Chew
,
J. W.
,
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Rim Sealing of Rotor–Stator Wheelspaces in the Presence of External Flow
,”
ASME
Paper No. 94-GT-126.
19.
Reichert
,
A. W.
, and
Lieser
,
D.
,
1999
, “
Efficiency of Air-Purged Rotor–Stator Seals in Combustion Turbine Engines
,”
ASME
Paper No. 99-GT-250.
20.
Bohn
,
D.
, and
Wolff
,
M.
,
2003
, “
Improved Formulation to Determine Minimum Sealing Flow—Cw, min—for Different Sealing Configurations
,”
ASME
Paper No. GT2003-38465.
21.
Scanlon
,
T.
,
Wilkes
,
J.
,
Bohn
,
D.
, and
Gentilhomme
,
O.
,
2004
, “
A Simple Method for Estimating Ingestion of Annulus Gas Into a Turbine Rotor Stator Cavity in the Presence of External Pressure Variations
,”
ASME
Paper No. GT2004-53097.
22.
Johnson
,
B. V.
,
Jakoby
,
R.
,
Bohn
,
D.
, and
Cunat
,
D.
,
2009
, “
A Method for Estimating the Influence of Time-Dependent Vane and Blade Pressure Fields on Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
131
(
2
), p.
021005
.
23.
Owen
,
J.
,
Pountney
,
O.
, and
Lock
,
G.
,
2012
, “
Prediction of Ingress Through Turbine Rim Seals—Part 2: Combined Ingress
,”
ASME J. Turbomach.
,
134
(
3
), p.
031013
.
24.
O'Mahoney
,
T. S. D.
,
Hills
,
N. J.
,
Chew
,
J. W.
, and
Scanlon
,
T.
,
2010
, “
Large-Eddy Simulation of Rim Seal Ingestion
,”
ASME
Paper No. GT2010-22962.
25.
Cao
,
C.
,
Chew
,
J. W.
,
Millington
,
P. R.
, and
Hogg
,
S. I.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
786
793
.
26.
Jakoby
,
R.
,
Zierer
,
T.
,
Lindblad
,
K.
,
Larsson
,
J.
,
deVito
,
L.
,
Bohn
,
D.
,
Funcke
,
J.
, and
Decker
,
A.
,
2004
, “
Numerical Simulation of the Unsteady Flow Field in an Axial Turbine Rim Seal Configuration
,”
ASME
Paper No. GT2004-53829.
27.
Wang
,
C.-Z.
,
Mathiyalagan
,
S. P.
,
Johnson
,
B. V.
,
Glahn
,
J. A.
, and
Cloud
,
D. F.
,
2012
, “
Rim Seal Ingestion in a Turbine Stage From 360-Degree Time-Dependent Numerical Simulations
,”
ASME
Paper No. GT2012-68193.
28.
Mirzamoghadam
,
A. V.
,
Kanjiyani
,
S.
,
Riahi
,
A.
,
Vishnumolakala
,
R.
, and
Gundeti
,
L.
,
2014
, “
Unsteady 360 Computational Fluid Dynamics Validation of a Turbine Stage Mainstream/Disk Cavity Interaction
,”
ASME J. Turbomach.
,
137
(
1
), p.
011008
.
29.
Roy
,
R. P.
,
Feng
,
J.
,
Narzary
,
D.
, and
Paolillo
,
R. E.
,
2005
, “
Experiment on Gas Ingestion Through Axial-Flow Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
573
582
.
30.
Boudet
,
J.
,
Hills
,
N. J.
, and
Chew
,
J. W.
,
2006
, “
Numerical Simulation of the Flow Interaction Between Turbine Main Annulus and Disc Cavities
,”
ASME
Paper No. GT2006-90307.
31.
Chilla
,
M.
,
Hodson
,
H.
, and
Newman
,
D.
,
2013
, “
Unsteady Interaction Between Annulus and Turbine Rim Seal Flows
,”
ASME J. Turbomach.
,
135
(
5
), p.
051024
.
32.
Rabs
,
M.
,
Benra
,
F.
,
Dohmen
,
H.
, and
Schneider
,
O.
,
2009
, “
Investigation of Flow Instabilities Near the Rim Cavity of a 1.5 Stage Gas Turbine
,”
ASME
Paper No. GT2009-59965.
33.
Popovic
,
I.
, and
Hodson
,
H. P.
,
2012
, “
The Effects of a Parametric Variation of the Rim Seal Geometry on the Interaction Between Hub Leakage and Mainstream Flows in HP Turbines
,”
ASME
Paper No. GT2012-68025.
34.
Popovic
,
I.
, and
Hodson
,
H. P.
,
2012
, “
Improving Turbine Stage Efficiency and Sealing Effectiveness Through Modifications of the Rim Seal Geometry
,”
ASME
Paper No. GT2012-68026.
35.
Mirzamoghadam
,
A. V.
,
Giebert
,
D.
,
Molla-Hosseini
,
K.
, and
Bedrosyan
,
L.
,
2012
, “
The Influence of HPT Forward Disc Cavity Platform Axial Overlap Geometry on Mainstream Ingestion
,”
ASME
Paper No. GT2012-68429.
36.
Lowry
,
S. A.
, and
Keeton
,
L. W.
,
1987
, “
Space Shuttle Main Engine High Pressure Fuel Pump Aft Platform Seal Cavity Flow Analysis
,” NASA Marshall Space Flight Center, Huntsville, AL, Technical Paper No.
NASA-TP-2685
. https://ntrs.nasa.gov/search.jsp?R=19870007567
37.
Guo
,
Z.
,
Rhode
,
D. L.
, and
Davis
,
F. M.
,
1996
, “
Computed Eccentricity Effects on Turbine Rim Seals at Engine Conditions With a Mainstream
,”
ASME J. Turbomach.
,
118
(
1
), pp.
143
152
.
38.
Brandvik
,
T.
, and
Pullan
,
G.
,
2011
, “
An Accelerated 3D Navier–Stokes Solver for Flows in Turbomachines
,”
ASME J. Turbomach.
,
133
(
2
), p.
021025
.
39.
Savov
,
S.
,
2015
, “
An Experimental Investigation of Gas Turbine Rotor–Stator Cavity Purge Flow
,” Ph.D. thesis, University of Cambridge, Cambridge, UK.
40.
Sangan
,
C. M.
,
Lalwani
,
Y.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2012
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part 3: Single and Double Seals
,”
ASME
Paper No. GT2012-68493.
41.
Scobie
,
J. A.
,
Teuber
,
R.
,
Li
,
Y. S.
,
Sangan
,
C. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2015
, “
Design of an Improved Turbine Rim-Seal
,”
ASME
Paper No. GT2015-42327.
42.
Okita
,
Y.
,
Nishiura
,
M.
,
Yamawaki
,
S.
, and
Hironaka
,
Y.
,
2005
, “
A Novel Cooling Method for Turbine Rotor–Stator Rim Cavities Affected by Mainstream Ingress
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), pp.
798
806
.
43.
Sangan
,
C. M.
,
Scobie
,
J. A.
,
Owen
,
J. M.
,
Lock
,
G. D.
,
Tham
,
K. M.
, and
Laurello
,
V. P.
,
2014
, “
Performance of a Finned Turbine Rim Seal
,”
ASME
Paper No. GT2014-25626.
44.
ISO/IEC
,
2009
, “
Guide 98-1:2009 Uncertainty of Measurement—Part 1: Introduction to the Expression of Uncertainty in Measurement
,” Geneva, Switzerland, Standard No.
ISO/IEC FDGuide 98-1
.https://infostore.saiglobal.com/store/Details.aspx/details.aspx?ProductID=1137593
45.
Sangan
,
C. M.
,
Lalwani
,
Y.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part 5: Fluid Dynamics of Wheel-Space
,”
ASME
Paper No. GT2013-94148.
You do not currently have access to this content.