Hybrid bearings are getting more and more attention because of their ability to provide both hydrodynamic support for high-speed rotors and hydrostatic lift in low-speed conditions such as during startup. Hybrid bearings are typically designed with recess grooves to modify the pressure profile and as a result to enable the lift capacity of the bearing under various operating conditions. The literature has shown that the size and shape of the recesses have not been systematically and quantitatively studied in detail. The goal of this study is to build a 3D analytical model for a hybrid-recessed bearing with five pockets and provide a comprehensive analysis for the effect of recess geometry on the overall performance of the bearing. In this study, a baseline model selected from the literature is constructed and validated using the ANSYS cfx computational fluid dynamics software package. A sensitivity analysis of the design variables on the performance of the bearing has been performed using design expert software. The length, width, and depth of the recess as well as the diameter and location of the five inlet ports have been selected as design variables. A multivariable and multi-objective genetic algorithm has also been solved using isight software with the goal of optimizing the geometry of the recess to maximize load capacity while minimizing bearing power loss from friction torque. The results of the baseline model show reasonable agreement with the experimental data published in the literature. The regression models for lift force and friction torque were both found to be statistically significant and accurate. It has been shown that friction torque decreases as the length of recess in the circumferential direction increases. The results showed that the load capacity is highly correlated to the diameter of the orifice, d. These results provide a deeper understanding of the relationship between the shape of the recess and bearing performance and are expected to be useful in practical hybrid-bearing design.
Skip Nav Destination
Article navigation
November 2017
Research-Article
Effect of Recess Shape on the Performance of a High-Speed Hybrid Journal Bearing
Alexandrina Untaroiu,
Alexandrina Untaroiu
Laboratory for Turbomachinery
and Components,
Department of Biomedical Engineering
and Mechanics,
Virginia Tech,
Norris Hall, Room 342,
495 Old Turner Street,
Blacksburg, VA 24061
e-mail: alexu@vt.edu
and Components,
Department of Biomedical Engineering
and Mechanics,
Virginia Tech,
Norris Hall, Room 342,
495 Old Turner Street,
Blacksburg, VA 24061
e-mail: alexu@vt.edu
Search for other works by this author on:
Gen Fu
Gen Fu
Laboratory for Turbomachinery
and Components,
Department of Biomedical Engineering
and Mechanics,
Virginia Tech,
Norris Hall, Room 107,
495 Old Turner Street,
Blacksburg, VA 24061
e-mail: gen8@vt.edu
and Components,
Department of Biomedical Engineering
and Mechanics,
Virginia Tech,
Norris Hall, Room 107,
495 Old Turner Street,
Blacksburg, VA 24061
e-mail: gen8@vt.edu
Search for other works by this author on:
Alexandrina Untaroiu
Laboratory for Turbomachinery
and Components,
Department of Biomedical Engineering
and Mechanics,
Virginia Tech,
Norris Hall, Room 342,
495 Old Turner Street,
Blacksburg, VA 24061
e-mail: alexu@vt.edu
and Components,
Department of Biomedical Engineering
and Mechanics,
Virginia Tech,
Norris Hall, Room 342,
495 Old Turner Street,
Blacksburg, VA 24061
e-mail: alexu@vt.edu
Gen Fu
Laboratory for Turbomachinery
and Components,
Department of Biomedical Engineering
and Mechanics,
Virginia Tech,
Norris Hall, Room 107,
495 Old Turner Street,
Blacksburg, VA 24061
e-mail: gen8@vt.edu
and Components,
Department of Biomedical Engineering
and Mechanics,
Virginia Tech,
Norris Hall, Room 107,
495 Old Turner Street,
Blacksburg, VA 24061
e-mail: gen8@vt.edu
1Corresponding author.
Contributed by the Structures and Dynamics Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received February 17, 2016; final manuscript received April 19, 2017; published online June 21, 2017. Assoc. Editor: Philip Bonello.
J. Eng. Gas Turbines Power. Nov 2017, 139(11): 112501 (10 pages)
Published Online: June 21, 2017
Article history
Received:
February 17, 2016
Revised:
April 19, 2017
Citation
Untaroiu, A., and Fu, G. (June 21, 2017). "Effect of Recess Shape on the Performance of a High-Speed Hybrid Journal Bearing." ASME. J. Eng. Gas Turbines Power. November 2017; 139(11): 112501. https://doi.org/10.1115/1.4036946
Download citation file:
Get Email Alerts
Cited By
On Leakage Flows In A Liquid Hydrogen Multi-Stage Pump for Aircraft Engine Applications
J. Eng. Gas Turbines Power
A Computational Study of Temperature Driven Low Engine Order Forced Response In High Pressure Turbines
J. Eng. Gas Turbines Power
The Role of the Working Fluid and Non-Ideal Thermodynamic Effects on Performance of Gas Lubricated Bearings
J. Eng. Gas Turbines Power
Tool wear prediction in broaching based on tool geometry
J. Eng. Gas Turbines Power
Related Articles
An Optimum Design Approach for Textured Thrust Bearing With Elliptical-Shape Dimples Using Computational Fluid Dynamics and Design of Experiments Including Cavitation
J. Eng. Gas Turbines Power (September,2017)
Hydrodynamic Performance Characteristics of a Fluid Film Journal Bearing With a Rectangular Jacking Pocket
J. Tribol (February,2020)
The Influence of Surface Patterning on the Thermal Properties of Textured Thrust Bearings
J. Tribol (November,2018)
Design of Experiments to Investigate Geometric Effects on Fluid Leakage Rate in a Balance Drum Seal
J. Eng. Gas Turbines Power (March,2015)
Related Proceedings Papers
Related Chapters
Hydrodynamic Lubrication
Design of Mechanical Bearings in Cardiac Assist Devices
Materials
Design and Application of the Worm Gear
Introduction
Design of Mechanical Bearings in Cardiac Assist Devices