Fuel composition has a strong influence on the turbulent flame speed, even at very high turbulence intensities. An important implication of this result is that the turbulent flame speed cannot be extrapolated from one fuel to the next using only the laminar flame speed and turbulence intensity as scaling variables. This paper presents curvature and tangential strain rate statistics of premixed turbulent flames for high hydrogen content (HHC) fuels. Global (unconditioned) stretch statistics are presented as well as measurements conditioned on the leading points of the flame front. These measurements are motivated by previous experimental and theoretical work that suggests the turbulent flame speed is controlled by the flame front characteristics at these points. The data were acquired with high-speed particle image velocimetry (PIV) in a low-swirl burner (LSB). We attained measurements for several H2:CO mixtures over a range of mean flow velocities and turbulence intensities. The results show that fuel composition has a systematic, yet weak effect on curvatures and tangential strain rates at the leading points. Instead, stretch statistics at the leading points are more strongly influenced by mean flow velocity and turbulence level. It has been argued that the increased turbulent flame speeds seen with increasing hydrogen content are the result of increasing flame stretch rates, and therefore, SL,max values, at the flame leading points. However, the differences observed with changing fuel compositions are not significant enough to support this hypothesis. Additional analysis is needed to understand the physical mechanisms through which the turbulent flame speed is altered by fuel composition effects.

References

References
1.
Lipatnikov
,
A. N.
, and
Chomiak
,
J.
,
2002
, “
Turbulent Flame Speed and Thickness: Phenomenology, Evaluation, and Application in Multi-Dimensional Simulations
,”
Prog. Energy Combust. Sci.
,
28
(
1
), pp.
1
74
.
2.
Lipatnikov
,
A. N.
, and
Chomiak
,
J.
,
2005
, “
Molecular Transport Effects on Turbulent Flame Propagation and Structure
,”
Prog. Energy Combust. Sci.
,
31
(
1
), pp.
1
73
.
3.
Ballal
,
D. R.
,
1979
, “
The Structure of a Premixed Turbulent Flame
,”
Proc. R. Soc. London A
,
367
(
1730
), pp.
353
380
.
4.
Kuznetsov
,
V. R.
, and
Sabel'nikov
,
V. A.
,
1990
, “
Turbulent Combustion of a Homogenous Mixture
,”
Turbulence and Combustion
,
Hemisphere Publishing
,
New York
.
5.
Filatyev
,
S. A.
,
Driscoll
,
J. F.
,
Carter
,
C. D.
, and
Donbar
,
J. M.
,
2005
, “
Measured Properties of Turbulent Premixed Flames for Model Assessment, Including Burning Velocities, Stretch Rates, and Surface Densities
,”
Combust. Flame
,
141
(
1–2
), pp.
1
21
.
6.
Driscoll
,
J. F.
,
2008
, “
Turbulent Premixed Combustion: Flamelet Structure and Its Effect on Turbulent Burning Velocities
,”
Prog. Energy Combust. Sci.
,
34
(
1
), pp.
91
134
.
7.
Cheng
,
R. K.
,
2009
, “
Turbulent Combustion Properties of Premixed Syngas
,”
Synthesis Gas Combustion: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
8.
Nakahara
,
M.
, and
Kido
,
H.
,
2008
, “
Study on the Turbulent Burning Velocity of Hydrogen Mixtures Including Hydrocarbons
,”
AIAA J.
,
46
(
7
), pp.
1569
1575
.
9.
Kido
,
H.
,
Nakahara
,
M.
,
Nakashima
,
K.
, and
Hashimoto
,
J.
,
2002
, “
Influence of Local Flame Displacement Velocity on Turbulent Burning Velocity
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1855
1861
.
10.
Law
,
C. K.
,
2006
,
Combustion Physics
,
Cambridge University Press
,
New York
.
11.
Karpov
,
V. P.
,
Lipatnikov
,
A. N.
, and
Zimont
,
V. L.
,
1997
, “
Flame Curvature as a Determinant of Preferential Diffusion Effects in Premixed Turbulent Combustion
,”
Advances in Combustion Science: In Honor of Ya. B. Zel'dovich
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.https://arc.aiaa.org/doi/abs/10.2514/5.9781600866456.0235.0250
12.
Kuznetsov
,
V. R.
, and
Sabel'nikov
,
V. A.
,
1977
, “
Combustion Characteristics of Mixed Gases in a Strongly Turbulent Flow
,”
Combust., Explos., Shock Waves
,
13
(
4
), pp.
425
435
.
13.
Zel'dovich
,
Y. B.
, and
Frank-Kamenetskii
,
D. A.
,
1947
,
Turbulent and Heterogeneous Combustion
,
Moscow Institute of Mechanical Engineering
,
Moscow, Russia
.
14.
Venkateswaran
,
P.
,
Marshall
,
A.
,
Shin
,
D. H.
,
Noble
,
D.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2011
, “
Measurements and Analysis of Turbulent Consumption Speeds of H2/CO Mixtures
,”
Combust. Flame
,
158
(
8
), pp.
1602
1614
.
15.
Venkateswaran
,
P.
,
Marshall
,
A.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2013
, “
Pressure and Fuel Effects on Turbulent Consumption Speeds of H2/CO Blends
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1527
1535
.
16.
Chan
,
C. K.
,
Lau
,
K. S.
,
Chin
,
W. K.
, and
Cheng
,
R. K.
,
1992
, “
Freely Propagating Open Premixed Turbulent Flames Stabilized by Swirl
,”
Symp. (Int.) Combust.
,
24
(
1
), pp.
511
518
.
17.
Cheng
,
R. K.
,
1995
, “
Velocity and Scalar Characteristics of Premixed Turbulent Flames Stabilized by Weak Swirl
,”
Combust. Flame
,
101
(
1–2
), pp.
1
14
.
18.
Marshall
,
A.
,
Venkateswaran
,
P.
,
Noble
,
D.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2011
, “
Development and Characterization of a Variable Turbulence Generation System
,”
Exp. Fluids
,
51
(
3
), pp.
611
620
.
19.
Cheng
,
R. K.
,
Littlejohn
,
D.
,
Nazeer
,
W. A.
, and
Smith
,
K. O.
,
2008
, “
Laboratory Studies of the Flow Field Characteristics of Low-Swirl Injectors for Adaptation to Fuel-Flexible Turbines
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
021501
.
20.
Cheng
,
R. K.
,
Yegian
,
D. T.
,
Miyasato
,
M. M.
,
Samuelsen
,
G. S.
,
Benson
,
C. E.
,
Pellizzari
,
R.
, and
Loftus
,
P.
,
2000
, “
Scaling and Development of Low-Swirl Burners for Low-Emission Furnaces and Boilers
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
1305
1313
.
21.
Cheng
,
R. K.
,
Fable
,
S. A.
,
Schmidt
,
D.
,
Arellano
,
L.
, and
Smith
,
K. O.
,
2001
, “
Development of a Low Swirl Injector Concept for Gas Turbines
,” International Joint Power Conference (IJPGC 2001), New Orleans, LA, June 4–7, Paper No. IJPGC2001/FACT-19055.
22.
Littlejohn
,
D.
, and
Cheng
,
R. K.
,
2007
, “
Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3155
3162
.
23.
Pfadler
,
S.
,
Beyrau
,
F.
, and
Leipertz
,
A.
,
2007
, “
Flame Front Detection and Characterization Using Conditioned Particle Image Velocimetry (CPIV)
,”
Opt. Express
,
15
(
23
), pp.
15444
15456
.
24.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst., Man, Cybern.
,
9
(
1
), pp.
62
66
.
25.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
R.T. Edwards
,
Philadelphia, PA
.
26.
Lee
,
T.
,
North
,
G.
, and
Santavicca
,
D.
,
1993
, “
Surface Properties of Turbulent Premixed Propane/Air Flames at Various Lewis Numbers
,”
Combust. Flame
,
93
(
4
), pp.
445
456
.
27.
Lee
,
T.
,
North
,
G.
, and
Santavicca
,
D.
,
1992
, “
Curvature and Orientation Statistics of Turbulent Premixed Flame Fronts
,”
Combust. Sci. Technol.
,
84
(
1
), pp.
121
132
.
28.
Kee
,
R. J.
,
Grcar
,
J. F.
,
Smooke
,
M.
, and
Miller
,
J.
,
1983
, “
Premix: A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames
,” Sandia National Laboratories, Livermore, CA, Technical Report No.
SAND85-8240
.https://www.researchgate.net/publication/260388319_PREMIX_A_FORTRAN_Program_for_Modeling_Steady_Laminar_One-Dimensional_Premixed_Flames
29.
Davis
,
S. G.
,
Joshi
,
A. V.
,
Wang
,
H.
, and
Egolfopoulos
,
F.
,
2005
, “
An Optimized Kinetic Model of H2/CO Combustion
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1283
1292
.
30.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, 2002, “
Gri-Mech 3.0
,” University of California, Berkeley, CA, accessed June 22, 2017, http://www.me.berkeley.edu/gri_mech/
31.
De Boor
,
C.
,
1978
,
A Practical Guide to Splines, Applied Mathematical Sciences
,
Springer-Verlag
,
New York
.
32.
Craven
,
P.
, and
Wahba
,
G.
,
1978
, “
Smoothing Noisy Data With Spline Functions
,”
Numerische Math.
,
31
(
4
), pp.
377
403
.
33.
Cant
,
R. S.
,
Pope
,
S. B.
, and
Bray
,
K. N. C.
,
1991
, “
Modelling of Flamelet Surface-to-Volume Ratio in Turbulent Premixed Combustion
,”
Symp. (Int.) Combust.
,
23
(
1
), pp.
809
815
.
34.
Boger
,
M.
,
Veynante
,
D.
,
Boughanem
,
H.
, and
Trouvé
,
A.
,
1998
, “
Direct Numerical Simulation Analysis of Flame Surface Density Concept for Large Eddy Simulation of Turbulent Premixed Combustion
,”
Symp. (Int.) Combust.
,
27
(
1
), pp.
917
925
.
35.
Hawkes
,
E. R.
, and
Cant
,
R. S.
,
2000
, “
A Flame Surface Density Approach to Large-Eddy Simulation of Premixed Turbulent Combustion
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
51
58
.
36.
Kolmogorov
,
A.
,
Petrovskii
,
I.
, and
Piskunov
,
N.
,
1937
, “
A Study of the Equation of Diffusion With Increase in the Quantity of Matter, and Its Application to a Biological Problem
,”
Bjul. Mosk. Gosuniv.
,
1
(
7
), pp.
1
26
.
37.
Hakberg
,
B.
, and
Gosman
,
A. D.
,
1985
, “
Analytical Determination of Turbulent Flame Speed From Combustion Models
,”
Symp. (Int.) Combust.
,
20
(
1
), pp.
225
232
.
38.
Duclos
,
J. M.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
1993
, “
A Comparison of Flamelet Models for Premixed Turbulent Combustion
,”
Combust. Flame
,
95
(
1–2
), pp.
101
117
.
39.
Shepherd
,
I.
, and
Ashurst
,
W.
,
1992
, “
Flame Front Geometry in Premixed Turbulent Flames
,”
Symp. (Int.) Combust.
,
24
(
1
), pp.
485
491
.
40.
Kostiuk
,
L.
,
Shepherd
,
I.
, and
Bray
,
K.
,
1999
, “
Experimental Study of Premixed Turbulent Combustion in Opposed Streams—Part III: Spatial Structure of Flames
,”
Combust. Flame
,
118
(
1–2
), pp.
129
139
.
41.
Haq
,
M.
,
Sheppard
,
C.
,
Woolley
,
R.
,
Greenhalgh
,
D.
, and
Lockett
,
R.
,
2002
, “
Wrinkling and Curvature of Laminar and Turbulent Premixed Flames
,”
Combust. Flame
,
131
(
1–2
), pp.
1
15
.
42.
Yuen
,
F. T.
, and
Gülder
,
Ö. L.
,
2009
, “
Investigation of Dynamics of Lean Turbulent Premixed Flames by Rayleigh Imaging
,”
AIAA J.
,
47
(
12
), pp.
2964
2973
.
43.
Bonaldo
,
A.
, and
Kelman
,
J. B.
,
2009
, “
Experimental Annular Stratified Flames Characterisation Stabilised by Weak Swirl
,”
Combust. Flame
,
156
(
4
), pp.
750
762
.
44.
Shepherd
,
I. G.
,
Cheng
,
R. K.
,
Plessing
,
T.
,
Kortschik
,
C.
, and
Peters
,
N.
,
2002
, “
Premixed Flame Front Structure in Intense Turbulence
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1833
1840
.
45.
Jenkins
,
K. W.
, and
Cant
,
R. S.
,
2002
, “
Curvature Effects on Flame Kernels in a Turbulent Environment
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
2023
2029
.
You do not currently have access to this content.