Soot formation process was investigated for biomass-based renewable diesel fuel, such as biomass to liquid (BTL), and conventional diesel combustion under varied fuel quantities injected into a constant volume combustion chamber. Soot measurement was implemented by two-color pyrometry under quiescent type diesel engine conditions (1000 K and 21% O2 concentration). Different fuel quantities, which correspond to different injection widths from 0.5 ms to 2 ms under constant injection pressure (1000 bar), were used to simulate different loads in engines. For a given fuel, soot temperature and KL factor show a different trend at initial stage for different fuel quantities, where a higher soot temperature can be found in a small fuel quantity case. but a higher KL factor is observed in a large fuel quantity case generally. Another difference occurs at the end of combustion due to the termination of fuel injection. Additionally, BTL flame has a lower soot temperature, especially under a larger fuel quantity (2 ms injection width). Meanwhile, average soot level is lower for BTL flame, especially under a lower fuel quantity (0.5 ms injection width). BTL shows an overall low sooting behavior with low soot temperature compared to diesel; however, trade-off between soot level and soot temperature needs to be carefully selected when different loads are used.

References

References
1.
Berntsson
,
A. W.
, and
Denbratt
,
I.
,
2007
, “
HCCI Combustion Using Charge Stratification for Combustion Control
,”
SAE
Paper No. 2007-01-0210.
2.
Collin
,
R.
,
Nygren
,
J.
,
Richter
,
M.
,
Aldén
,
M.
,
Hildingsson
,
L.
, and
Johansson
,
B.
,
2003
, “
Simultaneous OH- and Formaldehyde-LIF Measurements in an HCCI Engine
,”
SAE
Paper No. 2003-01-3218.
3.
Dec
,
J. E.
,
Hwang
,
W.
, and
Sjöberg
,
M.
,
2006
, “
An Investigation of Thermal Stratification in HCCI Engines Using Chemiluminescence Imaging
,”
SAE
Paper No. 2006-01-1518.
4.
Dec
,
J. E.
, and
Sjöberg
,
M.
,
2003
, “
A Parametric Study of HCCI Combustion-the Sources of Emissions at Low Loads and the Effects of GDI Fuel Injection
,”
SAE
Paper No. 2003-01-0752.
5.
Dec
,
J. E.
, and
Yang
,
Y.
,
2010
, “
Boosted HCCI for High Power Without Engine Knock and With Ultra-Low NOx Emissions—Using Conventional Gasoline
,”
SAE Int. J. Engines
,
3
(
1
), pp.
750
767
.
6.
Kokjohn
,
S.
,
Hanson
,
R.
,
Splitter
,
D.
,
Kaddatz
,
J.
, and
Reitz
,
R. D.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-Duty Engines
,”
SAE Int. J. Engines
,
4
(
1
), pp.
360
374
.
7.
Lim
,
J. H.
, and
Reitz
,
R. D.
,
2014
, “
High Load (21 Bar IMEP) Dual Fuel RCCI Combustion Using Dual Direct Injection
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
101514
.
8.
Splitter
,
D.
,
Hanson
,
R.
,
Kokjohn
,
S.
, and
Reitz
,
R. D.
,
2011
, “
Reactivity Controlled Compression Ignition (RCCI) Heavy-Duty Engine Operation at Mid-and High-Loads With Conventional and Alternative Fuels
,”
SAE
Paper No. 2011-01-0363.
9.
Benajes
,
J.
,
Molina
,
S.
, and
García
,
J. M.
,
2001
, “
Influence of Pre- and Post-Injection on the Performance and Pollutant Emissions in a HD Diesel Engine
,”
SAE
Paper No. 2001-01-0526.
10.
Chen
,
S. K.
,
2000
, “
Simultaneous Reduction of NOx and Particulate Emissions by Using Multiple Injections in a Small Diesel Engine
,”
SAE
Paper No. 2000-01-3084.
11.
Mohan
,
B.
,
Yang
,
W.
, and
Chou
,
S. K.
,
2013
, “
Fuel Injection Strategies for Performance Improvement and Emissions Reduction in Compression Ignition Engines—A Review
,”
Renewable Sustainable Energy Rev.
,
28
, pp.
664
676
.
12.
Qi
,
D.
,
Leick
,
M.
,
Liu
,
Y.
, and
Lee
,
C.-F. F.
,
2011
, “
Effect of EGR and Injection Timing on Combustion and Emission Characteristics of Split Injection Strategy DI-Diesel Engine Fueled With Biodiesel
,”
Fuel
,
90
(
5
), pp.
1884
1891
.
13.
O'Connor
,
J.
, and
Musculus
,
M.
,
2014
, “
Effects of Exhaust Gas Recirculation and Load on Soot in a Heavy-Duty Optical Diesel Engine With Close-Coupled Post Injections for High-Efficiency Combustion Phasing
,”
Int. J. Engine Res.
,
15
(
4
), pp.
421
443
.
14.
Hotta
,
Y.
,
Inayoshi
,
M.
,
Nakakita
,
K.
,
Fujiwara
,
K.
, and
Sakata
,
I.
,
2005
, “
Achieving Lower Exhaust Emissions and Better Performance in an HSDI Diesel Engine With Multiple Injection
,”
SAE
Paper No. 2005-01-0928.
15.
Barro
,
C.
,
Tschanz
,
F.
,
Obrecht
,
P.
, and
Boulouchos
,
K.
,
2012
, “
Influence of Post-Injection Parameters on Soot Formation and Oxidation in a Common-Rail-Diesel Engine Using Multi-Color-Pyrometry
,”
ASME
Paper No. ICEF2012-92075.
16.
Payri
,
F.
,
Benajes
,
J.
,
Pastor
,
J. V.
, and
Molina
,
S.
,
2002
, “
Influence of the Post-Injection Pattern on Performance, Soot and NOx Emissions in a HD Diesel Engine
,”
SAE
Paper No. 2002-01-0502.
17.
O'Connor
,
J.
, and
Musculus
,
M.
,
2014
, “
Effect of Load on Close-Coupled Post-Injection Efficacy for Soot Reduction in an Optical Heavy-Duty Diesel Research Engine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
101509
.
18.
Li
,
X.
,
Xu
,
Z.
,
Guan
,
C.
, and
Huang
,
Z.
,
2014
, “
Impact of Exhaust Gas Recirculation (EGR) on Soot Reactivity From a Diesel Engine Operating at High Load
,”
Appl. Therm. Eng.
,
68
(
1–2
), pp.
100
106
.
19.
Labecki
,
L.
,
Lindner
,
A.
,
Winklmayr
,
W.
,
Uitz
,
R.
,
Cracknell
,
R.
, and
Ganippa
,
L.
,
2013
, “
Effects of Injection Parameters and EGR on Exhaust Soot Particle Number-Size Distribution for Diesel and RME Fuels in HSDI Engines
,”
Fuel
,
112
, pp.
224
235
.
20.
McCormick
,
R. L.
,
Tennant
,
C. J.
,
Hayes
,
R. R.
,
Black
,
S.
,
Ireland
,
J.
,
McDaniel
,
T.
,
Williams
,
A.
,
Frailey
,
M.
, and
Sharp
,
C. A.
,
2005
, “
Regulated Emissions From Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards
,”
SAE
Paper No. 2005-01-2200.
21.
Zhang
,
Y.
, and
Boehman
,
A. L.
,
2007
, “
Impact of Biodiesel on NOx Emissions in a Common Rail Direct Injection Diesel Engine
,”
Energy Fuels
,
21
(
4
), pp.
2003
2012
.
22.
Zheng
,
Z.
,
Joshi
,
U.
,
Henein
,
N.
, and
Sattler
,
E.
,
2015
, “
Effect of Cetane Improver on Combustion and Emission Characteristics of Coal-Derived Sasol Isomerized Paraffinic Kerosene in a Single Cylinder Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071506
.
23.
Wu
,
Y.
,
Huang
,
R.
,
Lee
,
C. F.
, and
Huang
,
C.
,
2012
, “
Effects of the Exhaust Gas Recirculation Rate and Ambient Gas Temperature on the Spray and Combustion Characteristics of Soybean Biodiesel and Diesel
,”
Proc. Inst. Mech. Eng., Part D
,
226
(
3
), pp.
372
384
.
24.
Ito
,
T.
,
Kitamura
,
T.
,
Ueda
,
M.
,
Matsumoto
,
T.
,
Senda
,
J.
, and
Fujimoto
,
H.
,
2003
, “
Effects of Flame Lift-Off and Flame Temperature on Soot Formation in Oxygenated Fuel Sprays
,”
SAE
Paper No. 2003-01-0073.
25.
Zheng
,
Z.
,
Badawy
,
T.
,
Henein
,
N.
, and
Sattler
,
E.
,
2013
, “
Investigation of Physical and Chemical Delay Periods of Different Fuels in the Ignition Quality Tester
,”
ASME J. Eng. Gas Turbines Power
,
135
(
6
), p.
061501
.
26.
Zheng
,
Z.
,
Badawy
,
T.
,
Henein
,
N.
,
Sattler
,
E.
, and
Johnson
,
N.
,
2014
, “
Effect of Cetane Improver on Autoignition Characteristics of Low Cetane Sasol IPK Using Ignition Quality Tester
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
081505
.
27.
Wang
,
Z.
,
Liu
,
H.
,
Long
,
Y.
,
Wang
,
J.
, and
He
,
X.
,
2015
, “
Comparative Study on Alcohols–Gasoline and Gasoline–Alcohols Dual-Fuel Spark Ignition (DFSI) Combustion for High Load Extension and High Fuel Efficiency
,”
Energy
,
82
, pp.
395
405
.
28.
Liu
,
H.
,
Wang
,
Z.
, and
Wang
,
J.
,
2014
, “
Methanol-Gasoline DFSI (Dual-Fuel Spark Ignition) Combustion With Dual-Injection for Engine Knock Suppression
,”
Energy
,
73
, pp.
686
693
.
29.
Kousoulidou
,
M.
,
Fontaras
,
G.
,
Ntziachristos
,
L.
, and
Samaras
,
Z.
,
2009
, “
Evaluation of Biodiesel Blends on the Performance and Emissions of a Common-Rail Light-Duty Engine and Vehicle
,”
SAE
Paper No. 2009-01-0692.
30.
Mueller
,
C. J.
,
Boehman
,
A. L.
, and
Martin
,
G. C.
,
2009
, “
An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine With Soy Biodiesel
,”
SAE
Paper No. 2009-01-1792.
31.
McCormick
,
R. L.
,
Graboski
,
M. S.
,
Alleman
,
T. L.
,
Herring
,
A. M.
, and
Tyson
,
K. S.
,
2001
, “
Impact of Biodiesel Source Material and Chemical Structure on Emissions of Criteria Pollutants From a Heavy-Duty Engine
,”
Environ. Sci. Technol.
,
35
(
9
), pp.
1742
1747
.
32.
Aatola
,
H.
,
Larmi
,
M.
,
Sarjovaara
,
T.
, and
Mikkonen
,
S.
,
2008
, “
Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-Off Between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine
,”
SAE Int. J. Engines
,
1
(
1
), pp.
1251
1262
.
33.
Larsson
,
M.
, and
Denbratt
,
I.
,
2007
, “
An Experimental Investigation of Fischer–Tropsch Fuels in a Light-Duty Diesel Engine
,”
SAE
Paper No. 2007-01-0030.
34.
Miers
,
S. A.
,
Ng
,
H.
,
Ciatti
,
S. A.
, and
Stork
,
K.
,
2005
, “
Emissions, Performance, and In-Cylinder Combustion Analysis in a Light-Duty Diesel Engine Operating on a Fischer–Tropsch, Biomass-to-Liquid Fuel
,”
SAE
Paper No. 2005-01-3670.
35.
Schaberg
,
P.
,
Botha
,
J.
,
Schnell
,
M.
,
Hermann
,
H.-O.
,
Pelz
,
N.
, and
Maly
,
R.
,
2005
, “
Emissions Performance of GTL Diesel Fuel and Blends With Optimized Engine Calibrations
,”
SAE
Paper No. 2005-01-2187.
36.
Ng
,
H.
,
Biruduganti
,
M.
, and
Stork
,
K.
,
2005
, “
Comparing the Performance of SunDiesel™ and Conventional Diesel in a Light-Duty Vehicle and Heavy-Duty Engine
,”
SAE
Paper No. 2005-01-3776.
37.
Zhang
,
J.
, and
Fang
,
T.
,
2011
, “
Spray Combustion of Biodiesel and Diesel in a Constant Volume Combustion Chamber
,”
SAE
Paper No. 2011-01-1380.
38.
Jing
,
W.
,
Roberts
,
W. L.
, and
Fang
,
T. G.
,
2013
, “
Effects of Ambient Temperature and Oxygen Concentration on Diesel Spray Combustion Using a Single-Nozzle Injector in a Constant Volume Combustion Chamber
,”
Combust. Sci. Technol.
,
185
(
9
), pp.
1378
1399
.
39.
Sheppard
,
R. O.
, and
Yakobson
,
D. L.
,
2005
, “
Integrated Fischer–Tropsch and Power Production Plant With Low Co2 Emissions
,” US Patent No.
US6976362 B2
.
40.
Ogunkoya
,
D.
, and
Fang
,
T.
,
2015
, “
Engine Performance, Combustion, and Emissions Study of Biomass to Liquid Fuel in a Compression-Ignition Engine
,”
Energy Convers. Manage.
,
95
, pp.
342
351
.
41.
Jing
,
W.
,
Wu
,
Z.
,
Zhang
,
W.
, and
Fang
,
T.
,
2015
, “
Measurements of Soot Temperature and KL Factor for Spray Combustion of Biomass Derived Renewable Fuels
,”
Energy
,
91
, pp.
758
771
.
42.
Hottel
,
H. C.
, and
Broughton
,
F. P.
,
1932
, “
Determination of True Temperature and Total Radiation From Luminous Gas Flames
,”
Ind. Eng. Chem. Anal. Ed.
,
4
(
2
), pp.
166
175
.
43.
Musculus
,
M. P. B.
,
Singh
,
S.
, and
Reitz
,
R. D.
,
2008
, “
Gradient Effects on Two-Color Soot Optical Pyrometry in a Heavy-Duty DI Diesel Engine
,”
Combust. Flame
,
153
(
1–2
), pp.
216
227
.
44.
Payri
,
F.
,
Pastor
,
J. V.
,
García
,
J. M.
, and
Pastor
,
J. M.
,
2007
, “
Contribution to the Application of Two-Colour Imaging to Diesel Combustion
,”
Meas. Sci. Technol.
,
18
(
8
), p.
2579
.
45.
Tree
,
D. R.
, and
Svensson
,
K. I.
,
2007
, “
Soot Processes in Compression Ignition Engines
,”
Prog. Energy Combust. Sci.
,
33
(
3
), pp.
272
309
.
46.
Idicheria
,
C. A.
, and
Pickett
,
L. M.
,
2006
, “
Formaldehyde Visualization Near Lift-Off Location in a Diesel Jet
,”
SAE
Paper No. 2006-01-3434.
47.
Bruneaux
,
G.
,
2008
, “
Combustion Structure of Free and Wall-Impinging Diesel Jets by Simultaneous Laser-Induced Fluorescence of Formaldehyde, Poly-Aromatic Hydrocarbons, and Hydroxides
,”
Int. J. Engine Res.
,
9
(
3
), pp.
249
265
.
48.
Jing
,
W.
,
Roberts
,
W. L.
, and
Fang
,
T.
,
2015
, “
Spray Combustion of Jet-A and Diesel Fuels in a Constant Volume Combustion Chamber
,”
Energy Convers. Manage.
,
89
, pp.
525
540
.
You do not currently have access to this content.