Tidal current energy shows great attractive as it stores an enormous amount of predictable sustainable resource that can be extracted and used for the purpose of commercial power generation. The horizontal-axis tidal turbine (HATT) has been proposed as the most effective one among many tidal current energy extraction devices. It is well known that the similarities between horizontal-axis wind turbines (HAWTs) and tidal turbines suggest that much can be transferred from the design and operation of wind turbines. In the present work, a series of model counter-rotating type HATTs were designed according to the experience of a counter-rotating type HAWT, and a test rig was constructed. Experimental tests of the hydrodynamic performance in terms of power coefficient were carried out in a circulating water tunnel. Three model turbines consisting of different front and rear blades were analyzed. Experimental results of power coefficient for a range of tip speed ratios (TSRs) and setting angle matches between the front and rear blades for various conditions are presented. Such results provide valuable data for validating the hydrodynamic design and numerical simulations of counter-rotating type HATTs.

References

References
1.
Ellabban
,
O.
,
Abu-Rub
,
H.
, and
Blaabjerg
,
F.
,
2014
, “
Renewable Energy Resources: Current Status, Future Prospects and Their Enabling Technology
,”
Renewable Sustainable Energy Rev.
,
39
(
11
), pp.
748
764
.
2.
Ben Elghali
,
S. E.
,
Benbouzid
,
M. E. H.
, and
Charpentier
,
J. F.
,
2007
, “
Marine Tidal Current Electric Power Generation Technology: State of the Art and Current Status
,”
IEEE
International Electric Machines and Drives Conference, Antalya, Turkey, May 3–5, pp.
1407
1412
.
3.
Batten
,
W. M. J.
,
Bahaj
,
A. S.
,
Molland
,
A. F.
, and
Chaplin
,
J. R.
,
2006
, “
Hydrodynamics of Marine Current Turbines
,”
Renewable Energy
,
31
(
2
), pp.
249
256
.
4.
Batten
,
W. M. J.
,
Bahaj
,
A. S.
,
Molland
,
A. F.
, and
Chaplin
,
J. R.
,
2008
, “
The Prediction of the Hydrodynamic Performance of Marine Current Turbines
,”
Renewable Energy
,
33
(
5
), pp.
1085
1096
.
5.
Batten
,
W. M. J.
,
Bahaj
,
A. S.
,
Molland
,
A. F.
, and
Chaplin
,
J. R.
,
2007
, “
Experimentally Validated Numerical Method for the Hydrodynamic Design of Horizontal Axis Tidal Turbines
,”
Ocean Eng.
,
34
(
7
), pp.
1013
1020
.
6.
Bahaj
,
A. S.
,
Molland
,
A. F.
,
Chaplin
,
J. R.
, and
Batten
,
W. M. J.
,
2007
, “
Power and Thrust Measurements of Marine Current Turbines Under Various Hydrodynamic Flow Conditions in a Cavitation Tunnel and a Towing Tank
,”
Renewable Energy
,
32
(
3
), pp.
407
426
.
7.
Bahaj
,
A. S.
,
Batten
,
W. M. J.
, and
McCann
,
G.
,
2007
, “
Experimental Verifications of Numerical Predictions for the Hydrodynamic Performance of Horizontal Axis Marine Current Turbines
,”
Renewable Energy
,
32
(
15
), pp.
2479
2490
.
8.
Harrison
,
M. E.
,
Batten
,
W. M. J.
, and
Bahaj
,
A. S.
,
2010
, “
A Blade Element Actuator Disc Approach Applied Tidal Stream Turbines
,”
OCEANS
, Seattle, WA, Sept. 20–23, pp.
1
8
.
9.
Lee
,
J. H.
,
Park
,
S.
,
Kim
,
D. H.
,
Rhee
,
S. H.
, and
Kim
,
M.-C.
,
2012
, “
Computational Methods for Performance Analysis of Horizontal Axis Tidal Stream Turbines
,”
Appl. Energy
,
98
, pp.
512
523
.
10.
Goundar
,
J. N.
, and
Ahmed
,
M. R.
, “
Design of a Horizontal Axis Tidal Current Turbine
,”
Appl. Energy
,”
111
, pp.
161
174
.
11.
Sun
,
X.
,
Chick
,
J. P.
, and
Bryden
,
I. G.
,
2008
, “
Laboratory-Scale Simulation of Energy Extraction From Tidal Currents
,”
Renewable Energy
,
33
(
6
), pp.
1267
1274
.
12.
Harrison
,
M. E.
,
Batten
,
W. M. J.
,
Myers
,
L. E.
, and
Bahaj
,
A. S.
,
2009
, “
A Comparison Between CFD Simulations and Experiments for Predicting the Far Wake of Horizontal Axis Tidal Turbines
,”
Eighth European Wave and Tidal Energy Conference
, Uppsala, Sweden, Sept. 7–10, pp.
566
571
.
13.
Harrison
,
M. E.
,
Batten
,
W. M. J.
, and
Bahaj
,
A. S.
,
2013
, “
Accuracy of the Actuator Disc-RANS Approach for Predicting the Performance and Wake of Tidal Turbines
,”
Philos. Trans. R. Soc. A
,
371
(
1985
), pp.
1
14
.
14.
O'Doherty
,
T.
,
Mason-Jones
,
A.
,
O'Doherty
,
D. M.
, and
Byrne
,
C. B.
,
2009
, “
Experimental and Computational Analysis of a Model Horizontal Axis Tidal Turbine
,”
Eighth European Wave and Tidal Energy Conference
, Uppsala, Sweden, Sept. 7–10, pp.
833
841
.
15.
Fan
,
R. J.
,
Chaplin
,
J. R.
, and
Yang
,
G. J.
,
2010
, “
CFD Investigation of Performance for Marine Current Turbine Based on RANS Simulations
,”
Key Eng. Mater.
,
419–420
, pp.
309
312
.
16.
Mcsherry
,
R.
,
Grimwade
,
J.
,
Jones
,
I.
,
Mathias
,
S.
,
Wells
,
A.
,
Mateus
,
A.
, and
House
,
E. F.
,
2011
, “
3D CFD Modelling of Tidal Turbine Performance With Validation Against Laboratory Experiments
,”
Ninth European Wave and Tidal Energy Conference
, Southampton, UK, Sept. 5–9.
17.
Afgan
,
I.
,
McNaughton
,
J.
,
Rolfo
,
S.
,
Apsley
,
D. D.
,
Stallard
,
T.
, and
Stansby
,
P.
,
2013
, “
Turbulent Flow and Loading on a Tidal Stream Turbine by LES and RANS
,”
Int. J. Heat Fluid Flow
,
43
, pp.
96
108
.
18.
Malki
,
R.
,
Williams
,
A. J.
,
Croft
,
T. N.
,
Togneri
,
M.
, and
Masters
,
I. A.
,
2013
, “
A Coupled Blade Element Momentum—Computational Fluid Dynamics Model for Evaluating Tidal Stream Turbine Performance
,”
Appl. Math. Model.
,
37
(
5
), pp.
3006
3020
.
19.
Wang
,
D.
,
Atlar
,
M.
, and
Sampson
,
R.
,
2007
, “
An Experimental Investigation on Cavitation, Noise, and Slipstream Characteristics of Ocean Stream Turbines
,”
Proc. IMechE, Part A
,
221
(
2
), pp.
219
231
.
20.
European Commission,
2005
,
SEAFLOW World's First Pilot Project for the Exploitation of Marine Currents at a Commercial Scale
, Final Publishable Report EUR 21616. Available at https://ec.europa.eu/research/energy/pdf/seaflow_en.pdf.
21.
EMEC, 2016, “European Marine Energy Centre,” European Marine Energy Centre Ltd., Orkney, UK, accessed Apr. 29, 2017, http://www.emec.org.uk/
22.
Clarke
,
J. A.
,
Connor
,
G.
,
Grant
,
A. D.
, and
Johnstone
,
C. M.
,
2007
, “
Design and Testing of a Contra-Rotating Tidal Current Turbine
,”
Proc. IMechE, PartA
,
221
(
2
), pp.
171
179
.
23.
Usui
,
Y.
,
Takaki
,
K.
,
Kanemoto
,
T.
, and
Hiraki
,
K.
,
2013
, “
Counter-Rotating Type Tidal-Stream Power Unit Playing Favorable Features in Various Ocean Circumstances
,”
ASME
Paper No. IMECE2013-66001.
24.
Huang
,
B.
, and
Kanemoto
,
T.
,
2015
, “
Multi-Objective Numerical Optimization of the Front Blade Pitch Angle Distribution in a Counter-Rotating Type Horizontal-Axis Tidal Turbine
,”
Renewable Energy
,
81
, pp.
837
844
.
You do not currently have access to this content.