Germany's Fifth Aeronautical Research Program (LuFo-V) gives the framework for the thermoelectric energy recuperation for aviation (TERA) project, which focuses on the positioning of thermoelectricity by means of a holistic reflection of technological possibilities and challenges for the adoption of thermoelectric generators (TEG) to aircraft systems. The aim of this paper is to show the project overview and some first estimations of the performance of an integrated TEG between the hot section of an engine and the cooler bypass flow. Therefore, casing integration positions close to different components are considered such as high-pressure turbine (HPT), low-pressure turbine (LPT), nozzle, or one of the interducts, where the temperature gradients are high enough for efficient TEG function. TEG efficiency is then to be optimized by taking into account occurring thermal resistance, heat transfer mechanisms, efficiency factors, as well as installation and operational system constrains like weight and space.

References

References
1.
Argüelles
,
P.
,
Bischoff
,
M.
,
Busquin
,
P.
,
Droste
,
B.
,
Evans
,
S. R.
,
Kröll
,
W.
,
Lagardère
,
J.-L.
,
Lina
,
A.
,
Lumsden
,
J.
,
Ranque
,
D.
,
Rasmussen
,
S.
,
Reutlinger
,
P.
,
Robins
,
S. R.
,
Terho
,
H.
, and
Wittlöv
,
A.
,
2001
, “
European Aeronautics: A Vision for 2020—Meeting Society's Needs and Winning Global Leadership
,” Report of the Group of Personalities, European Commission, Brussels, Belgium, Report No.
KI-34-01-827-EN-C
.
2.
Kallas
,
S.
, and
Geoghegan-Quinn
,
M.
,
2011
, “
Flightpath 2050 Europe's Vision for Aviation
,” Report of the High Level Group on Aviation Research, European Commission, Brussels, Belgium, Report No.
EUR 098 EN
.
3.
Kurzke
,
J.
,
2013
, “
GasTurb 12: Design and Off-Design Performance of Gas Turbine Engines
,” GasTurb GmbH, Aachen, Germany.
4.
Goldsmid
,
H.
,
1995
, “
Conversion Efficiency and Figure of Merit
,”
CRC Handbook of Thermoelectrics
,
CRC Press
,
Boca Raton, FL
, Chap. 3.
5.
Wallace
,
T.
,
2011
, “
Development of Marine Thermoelectric Heat Recovery Systems
,”
DoE Thermoelectric Applications Workshop
, San Diego, CA.
6.
Frazier
,
M.
,
2015
, “GMZ Energy Announces New High Temperature Thermoelectric Material,” BIGfish Communications, Brookline, MA, accessed Aug. 16, 2015, http://www.reuters.com/article/2014/12/03/ma-gmz-energy-idUSnBw035186a+100+BSW20141203
7.
Rowe
,
D.
, Smith, J., Thomas G., and Min, G.,
2011
, “
Weight Penalty Incurred in Thermoelectric Recovery of Automobile Exhaust Heat
,”
J. Electr. Mater.
,
40
(
5
), p.
784
.
8.
Kumar
,
S.
, Heister, S. D., Xu, X., Salvador, J. R., and Meisner, G. P.,
2013
, “
Thermoelectric Generators for Automotive Waste Heat Recovery Systems—Part 1: Numerical Modeling and Baseline Model Analysis
,”
J. Electr. Mater.
,
42
(
4
), pp.
665
674
.
9.
Samson
,
D.
, Otterpohl, T., Kluge, M., Schmid, U., and Becker, Th.,
2010
, “
Analysis-Specific Thermoelectric Generator Module
,”
J. Electr. Mater.
,
39
(
9
), pp. 2092–2095.
10.
Samson
,
D.
, Kluge, M., Fuss, T., Schmid, U., and Becker, Th.,
2012
, “
Flight Test Result of a Thermoelectric Energy Harvester for Aircraft
,”
J. Electr. Mater.
,
41
(
6
), pp.
1134
1137
.
11.
Park
,
G.
, Rosing, T., Todd, M. D., Farrar, C. R., and Hodgkiss, W.,
2008
, “
Energy Harvesting for Structural Health Monitoring Sensor Networks
,”
J. Electr. Mater.
,
14
(
1
), p.
64
.
12.
Paradiso
,
J. A.
, and Starner, T.,
2005
, “
Energy Scavenging for Mobile and Wireless Electronics
,”
IEEE Pervasive Comput.
,
4
(
1
), pp.
18
27
.
13.
Huang
,
J.
,
2009
, “
Aerospace and Aircraft Thermoelectric Applications
,”
DoE Thermoelectric Applications Workshop
, San Diego, CA.
14.
Kousksou
,
T.
,
2010
, “
Numerical Analysis of Thermoelectric Power Generation: Aircraft Systems Application
,” Third ECOS, Lausanne, Switzerland.
15.
Kousksou
,
T.
,
2011
, “
Numerical Study of Thermoelectric Power Generation for an Helicopter Conical Nozzle
,”
J. Power Sources
,
196
(
8
), p.
4026
.
16.
Schmitz
,
A.
,
2012
, “
Development of a Tubular Thermoelectric Generator for Exhaust Waste Heat Recovery
,”
Third IAV Congress
, Berlin.
17.
Rowe
,
D. M.
,
2005
, “
General Principles and Basic Considerations
,”
CRC Handbook of Thermoelectrics
,
CRC Press
,
Boca Raton, FL
, Chap. 1.
18.
Snyder
,
G. J.
,
2005
, “
Thermoelectric Power Generation: Efficiency and Compatibility
,”
CRC Handbook of Thermoelectrics
,
CRC Press
,
Boca Raton, FL
, Chap. 9.
19.
Zheng
,
X. F.
,
Liu
,
C. X.
,
Yan
,
Y. Y.
, and
Wang
,
Q.
,
2014
, “
A Review of Thermoelectrics Research—Recent Developments and Potentials for Sustainable and Renewable Energy Applications
,”
Renewable Sustainable Energy Rev.
,
32
, pp.
486
503
.
20.
NASA
,
1976
, “
US Standard Atmosphere
,” NASA, Washington, DC, Report No. NOAA-S/T 76-1562.
21.
Viswanathan
,
R.
,
2001
,
Gas Turbine Blade Superalloy Material Property Handbook
,
Electric Power Research Institute
, Palo Alto, CA.
22.
Verein Deutscher Ingenieure
,
2013
,
VDI-Wärmeatlas
(VDI-Buch),
11th ed.
,
Springer
,
Berlin
.
23.
Komatsu Corp., 2009, “Komatsu to Launch Sales of the World's Highest Efficiency Thermoelectric Generation Modules Developed In-House,”
Module Division, KELK Ltd.
, Komatsu, Tokyo, Japan, http://www.komatsu.com/CompanyInfo/press/2009012714011528411.html
You do not currently have access to this content.