In operation, rotating bladed disks (blisks) are often subject to high levels of dynamic loading, resulting in large amplitudes of forced vibrations especially at resonance. Moreover, variations in structural properties of individual sectors, referred to as mistuning, can lead to strain energy localization and can amplify forced responses. To prevent damages caused by high cycle fatigue, various frictional damping sources are introduced to dissipate vibration energy. Due to the nonlinear behavior of frictional contacts, conventional methods to study the dynamics of the blisk–damper systems are based often on numerical time integration, which is time-consuming and can be computationally prohibitive due to the large sizes of commercial blisk models. Existing techniques for model reduction either rely heavily on cyclic symmetry of the blisk–damper system or are based on component mode synthesis (CMS). However, in the presence of mistuning, cyclic symmetry no longer exists. Also, mistuning is random and best studied statistically. Repetitive CMS condensation for a large amount of random mistuning patterns can lead to a computationally formidable task. This paper presents a reduced-order modeling (ROM) technique to efficiently capture the nonlinear dynamic responses of blisk–damper systems with both small perturbations in blade material properties (small mistuning) and significant changes in the blisk geometries (large mistuning). The ROMs are formed by projecting the blisk–damper systems onto a novel mode basis that mimics the contact behavior. This mode basis contains normal mode shapes of the mistuned blisk–damper systems with either sliding or sticking conditions enforced on the contact surfaces. These mode shapes are computed through the N-PRIME method, a technique recently developed by the authors to efficiently obtain mode shapes for blisks with simultaneous large and small mistuning. The resulting modal nonlinear equations of motion (EOM) are solved by a hybrid frequency/time (HFT) domain method with continuation. In the HFT method, the contact status and friction forces are determined in the time domain by a quasi-two-dimensional contact model at each contact point, whereas the modal EOM are solved in the frequency domain according to a harmonic balance formulation. The forced responses computed by the proposed ROMs are validated for two systems with distinct mistuning patterns. A statistical analysis is performed to study the effectiveness of the frictional dampers under random mistuning patterns.

References

References
1.
Pfeiffer
,
F.
, and
Hajek
,
M.
,
1992
, “
Stick-Slip Motion of Turbine Blade Dampers
,”
Philos. Trans. R. Soc. London, Ser. A
,
338
(
1651
), pp.
503
517
.
2.
Sextro
,
W.
,
Popp
,
K.
, and
Wolter
,
I.
,
1997
, “
Improved Reliability of Bladed Disks Due to Friction Dampers
,”
ASME
Paper No. 97-GT-189.
3.
Yang
,
B.
, and
Menq
,
C.
,
1998
, “
Characterization of Contact Kinematics and Application to the Design of Wedge Dampers in Turbomachinery Blading: Part 1—Stick-Slip Contact Kinematics
,”
ASME J. Eng. Gas Turbines Power
,
120
(
2
), pp.
410
417
.
4.
Yang
,
B.
, and
Menq
,
C.
,
1998
, “
Characterization of Contact Kinematics and Application to the Design of Wedge Dampers in Turbomachinery Blading: Part 2—Prediction of Forced Response and Experimental Verification
,”
ASME J. Eng. Gas Turbines Power
,
120
(
2
), pp.
418
423
.
5.
Csaba
,
G.
,
1999
, “
Modeling of a Microslip Friction Damper Subjected to Translation and Rotation
,”
ASME
Paper No. 99-GT-149.
6.
Sanliturk
,
K.
,
Ewins
,
D.
, and
Stanbridge
,
A.
,
2001
, “
Underplatform Dampers for Turbine Blades: Theoretical Modeling, Analysis, and Comparison With Experimental Data
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
919
929
.
7.
Cigeroglu
,
E.
,
An
,
N.
, and
Menq
,
C.-H.
,
2007
, “
Wedge Damper Modeling and Forced Response Prediction of Frictionally Constrained Blades
,”
ASME
Paper No. GT2007-27963.
8.
Cigeroglu
,
E.
,
An
,
N.
, and
Menq
,
C.-H.
,
2009
, “
Forced Response Prediction of Constrained and Unconstrained Structures Coupled Through Frictional Contacts
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022505
.
9.
Yang
,
B.
,
Chen
,
J.
, and
Menq
,
C.
,
1999
, “
Prediction of Resonant Response of Shrouded Blades With Three-Dimensional Shroud Constraint
,”
ASME J. Eng. Gas Turbines Power
,
121
(
3
), pp.
523
529
.
10.
Petrov
,
E.
, and
Ewins
,
D.
,
2003
, “
Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Disks
,”
ASME J. Turbomach.
,
125
(
2
), pp.
364
371
.
11.
Petrov
,
E.
,
2004
, “
A Method for Use of Cyclic Symmetry Properties in Analysis of Nonlinear Multiharmonic Vibrations of Bladed Disks
,”
ASME J. Turbomach.
,
126
(
1
), pp.
175
183
.
12.
Cigeroglu
,
E.
, and
Ozguven
,
H. N.
,
2006
, “
Nonlinear Vibration Analysis of Bladed Disks With Dry Friction Dampers
,”
J. Sound Vib.
,
295
(
3–5
), pp.
1028
1043
.
13.
Siewert
,
C.
,
Panning
,
L.
,
Wallaschek
,
J.
, and
Richter
,
C.
,
2010
, “
Multiharmonic Forced Response Analysis of a Turbine Blading Coupled by Nonlinear Contact Forces
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p. 082501.
14.
Niemotka
,
M. A.
, and
Ziegert
,
J. C.
,
1993
, “
Optimal Design of Split Ring Dampers for Gas Turbine Engines
,”
ASME
Paper No. 93-GT-116.
15.
Laxalde
,
D.
,
Thouverez
,
F.
,
Sinou
,
J.-J.
, and
Lombard
,
J.-P.
,
2007
, “
Qualitative Analysis of Forced Response of Blisks With Friction Ring Dampers
,”
Eur. J. Mech., A/Solids
,
26
(
4
), pp.
676
687
.
16.
Laxalde
,
D.
,
Thouverez
,
F.
, and
Lombard
,
J.-P.
,
2010
, “
Forced Response Analysis of Integrally Bladed Disks With Friction Ring Dampers
,”
ASME J. Vib. Acoust.
,
132
(
1
), p.
011013
.
17.
Laxalde
,
D.
,
Salles
,
L.
,
Blanc
,
L.
, and
Thouverez
,
F.
,
2008
, “
Non-Linear Modal Analysis for Bladed Disks With Friction Contact Interfaces
,”
ASME
Paper No. GT2008-50860.
18.
Craig
,
R. R.
, and
Kurdila
,
A. J.
,
2006
,
Fundamentals of Structural Dynamics
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
19.
Ottarsson
,
G.
,
Castanier
,
M.
, and
Pierre
,
C.
,
1994
, “
A Reduced-Order Modeling Technique for Mistuned Bladed Disks
,”
AIAA
Paper No. 94-1640-CP.
20.
Castanier
,
M. P.
,
Ottarsson
,
G.
, and
Pierre
,
C.
,
1997
, “
A Reduced Order Modeling Technique for Mistuned Bladed Disks
,”
ASME J. Vib. Acoust.
,
119
(
3
), pp.
439
447
.
21.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M.
, and
Pierre
,
C.
,
2003
, “
A Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA
Paper No. 2003-1545.
22.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2007
, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.
23.
Lim
,
S.-H.
,
Castanier
,
M.
, and
Pierre
,
C.
,
2004
, “
Vibration Modeling of Bladed Disks Subject to Geometric Mistuning and Design Changes
,”
AIAA
Paper No. 2004-1686.
24.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
1999
, “
Reduced Order Modeling and Vibration Analysis of Mistuned Bladed Disk Assemblies With Shrouds
,”
ASME J. Eng. Gas Turbines Power
,
121
(
3
), pp.
515
522
.
25.
Bladh
,
R.
,
Pierre
,
C.
,
Castanier
,
M. P.
, and
Kruse
,
M. J.
,
2002
, “
Dynamic Response Predictions for a Mistuned Industrial Turbomachinery Rotor Using Reduced-Order Modeling
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
311
324
.
26.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2000
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks—Part I: Theoretical Models
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
89
99
.
27.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2000
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks—Part II: Application
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
100
108
.
28.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
1999
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
893
900
.
29.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2002
, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach.
,
124
(
4
), pp.
597
605
.
30.
Vargiu
,
P.
,
Firrone
,
C.
,
Zucca
,
S.
, and
Gola
,
M.
,
2011
, “
A Reduced Order Model Based on Sector Mistuning for the Dynamic Analysis of Mistuned Bladed Disks
,”
Int. J. Mech. Sci.
,
53
(
8
), pp.
639
646
.
31.
Fitzner
,
C.
,
Epureanu
,
B. I.
, and
Filippi
,
S.
,
2014
, “
Nodal Energy Weighted Transformation: A Mistuning Projection and Its Application to FLADE Turbines
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
167
180
.
32.
Mbaye
,
M.
,
Soize
,
C.
, and
Ousty
,
J.-P.
,
2010
, “
A Reduced-Order Model of Detuned Cyclic Dynamical Systems With Geometric Modifications Using a Basis of Cyclic Modes
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
112502
.
33.
Madden
,
A.
,
Epureanu
,
B. I.
, and
Filippi
,
S.
,
2012
, “
Reduced-Order Modeling Approach for Blisks With Large Mass, Stiffness, and Geometric Mistuning
,”
AIAA J.
,
50
(
2
), pp.
366
374
.
34.
Griffin
,
J.
,
1980
, “
Friction Damping of Resonant Stresses in Gas Turbine Engine Airfoils
,”
ASME J. Eng. Power
,
102
(
2
), pp.
329
333
.
35.
Ferri
,
A.
,
1995
, “
Friction Damping and Isolation Systems
,”
ASME J. Mech. Des.
,
117B
, pp.
196
206
.
36.
Menq
,
C.-H.
, and
Griffin
,
J.
,
1985
, “
Comparison of Transient and Steady State Finite Element Analyses of the Forced Response of a Frictionally Damped Beam
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
107
(
1
), pp.
19
25
.
37.
Cameron
,
T.
,
Griffin
,
J.
,
Kielb
,
R.
, and
Hoosac
,
T.
,
1990
, “
Integrated Approach for Friction Damper Design
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
112
(
2
), pp.
175
182
.
38.
Menq
,
C.-H.
,
Bielak
,
J.
, and
Griffin
,
J.
,
1986
, “
Influence of Microslip on Vibratory Response, Part I: A New Microslip Model
,”
J. Sound Vib.
,
107
(
2
), pp.
279
293
.
39.
Menq
,
C.-H.
,
Griffin
,
J.
, and
Bielak
,
J.
,
1986
, “
Influence of Microslip on Vibratory Response, Part II: A Comparison With Experimental Results
,”
J. Sound Vib.
,
107
(
2
), pp.
295
307
.
40.
Menq
,
C.-H.
,
Cigeroglu
,
E.
, and
Lu
,
W.
,
2006
, “
One-Dimensional Dynamic Microslip Friction Model
,”
J. Sound Vib.
,
292
(
3–5
), pp.
881
898
.
41.
Yang
,
B.
,
Chu
,
M.
, and
Menq
,
C.
,
1998
, “
Stick-Slip-Separation Analysis and Non-Linear Stiffness and Damping Characterization of Friction Contacts Having Variable Normal Load
,”
J. Sound Vib.
,
210
(
4
), pp.
461
481
.
42.
Cigeroglu
,
E.
,
An
,
N.
, and
Menq
,
C.-H.
,
2007
, “
A Microslip Friction Model With Normal Load Variation Induced by Normal Motion
,”
Nonlinear Dyn.
,
50
(
3
), pp.
609
626
.
43.
Sanliturk
,
K.
, and
Ewins
,
D.
,
1996
, “
Modelling Two-Dimensional Friction Contact and Its Application Using Harmonic Balance Method
,”
J. Sound Vib.
,
193
(
2
), pp.
511
523
.
44.
Menq
,
C.
, and
Yang
,
B.
,
1998
, “
Non-Linear Spring Resistance and Friction Damping of Frictional Constraint Having Two-Dimensional Motion
,”
J. Sound Vib.
,
217
(
1
), pp.
127
143
.
45.
Yang
,
B.
, and
Menq
,
C.
,
1998
, “
Characterization of 3D Contact Kinematics and Prediction of Resonant Response of Structures Having 3D Frictional Constraint
,”
J. Sound Vib.
,
217
(
5
), pp.
909
925
.
46.
Chen
,
J.
,
Yang
,
B.
, and
Menq
,
C.
,
2000
, “
Periodic Forced Response of Structures Having Three-Dimensional Frictional Constraints
,”
J. Sound Vib.
,
229
(
4
), pp.
775
792
.
47.
Tanrikulu
,
O.
,
Kuran
,
B.
,
Ozguven
,
H.
, and
Imregun
,
M.
,
1993
, “
Forced Harmonic Response Analysis of Nonlinear Structures Using Describing Functions
,”
AIAA J.
,
31
(
7
), pp.
1313
1320
.
48.
Cardona
,
A.
,
Coune
,
T.
,
Lerusse
,
A.
, and
Geradin
,
M.
,
1994
, “
A Multiharmonic Method for Non-Linear Vibration Analysis
,”
Int. J. Numer. Methods Eng.
,
37
(
9
), pp.
1593
1608
.
49.
Chen
,
J.
, and
Menq
,
C.
,
2001
, “
Periodic Response of Blades Having Three-Dimensional Nonlinear Shroud Constraints
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
901
909
.
50.
Lau
,
S.
,
Cheung
,
Y.
, and
Wu
,
S.
,
1983
, “
Incremental Harmonic Balance Method With Multiple Time Scales for Aperiodic Vibration of Nonlinear Systems
,”
ASME J. Appl. Mech.
,
50
(
4a
), pp.
871
876
.
51.
Pierre
,
C.
,
Ferri
,
A.
, and
Dowell
,
E.
,
1985
, “
Multi-Harmonic Analysis of Dry Friction Damped Systems Using an Incremental Harmonic Balance Method
,”
ASME J. Appl. Mech.
,
52
(
4
), pp.
958
964
.
52.
Guillen
,
J.
,
1999
, “
Studies of the Dynamics of Dry-Friction-Damped Blade Assemblies
,”
Ph.D. thesis
, University of Michigan, Ann Arbor, MI.https://tel.archives-ouvertes.fr/tel-00365016/
53.
Poudou
,
O.
, and
Pierre
,
C.
,
2003
, “
Hybrid Frequency-Time Domain Methods for the Analysis of Complex Structural Systems With Dry Friction Damping
,”
AIAA
Paper No. 2003-1411.
54.
Berthillier
,
M.
,
Dupont
,
C.
,
Mondal
,
R.
, and
Barrau
,
J.
,
1998
, “
Blades Forced Response Analysis With Friction Dampers
,”
ASME J. Vib. Acoust.
,
120
(
2
), pp.
468
474
.
55.
Sundararajan
,
P.
, and
Noah
,
S.
,
1997
, “
Dynamics of Forced Nonlinear Systems Using Shooting/Arc-Length Continuation Method—Application to Rotor Systems
,”
ASME J. Vib. Acoust.
,
119
(
1
), pp.
9
20
.
You do not currently have access to this content.