The authors present an improved modeling approach to analyze the coupled rotor-support dynamics by modeling the rotor with solid finite elements (FEs) and utilizing multiple-input and multiple-output transfer functions (TFs) to represent the flexible support. A state-space model is then employed to perform general rotordynamic analyses. Transfer functions are used to simulate dynamic characteristics of the support structure, including cross-coupling between degrees-of-freedom. These TFs are derived by curve-fitting the frequency response functions of the support model at bearing locations. The impact of the polynomial degree of the TF on the response analysis is discussed, and a general rule is proposed to select an adequate polynomial degree. To validate the proposed approach, a comprehensive comparison between the complete solid FE rotor-support model (CSRSM) and the reduced state-space model (RSSM) is presented. Comparisons are made between natural frequencies, critical speeds, unbalance response, logarithmic decrement, and computation time. The results show that the RSSM provides a dynamically accurate approximation of the solid FE model in terms of rotordynamic analyses. Moreover, the computation time for the RSSM is reduced to less than 20% of the time required for the CSRSM. In addition, the modes up to 100,000 cpm are compared among the super-element, beam element, and RSSM. The results show that the RSSM is more accurate in predicting high-frequency modes than the other two approaches. Further, the proposed RSSM is useful for applications in vibration control and active magnetic bearing systems.

References

References
1.
Nelson
,
H. D.
, and
McVaugh
,
J. M.
,
1976
, “
The Dynamics of Rotor-Bearing Systems Using Finite Elements
,”
ASME J. Eng. Ind.
,
98
(
2
), pp.
593
600
.
2.
Nelson
,
H. D.
,
1980
, “
A Finite Rotating Shaft Element Using Timoshenko Beam Theory
,”
ASME J. Mech. Des.
,
102
(
4
), pp.
793
803
.
3.
Rouch
,
K. E.
, and
Kao
,
J.-S.
,
1979
, “
A Tapered Beam Finite Element for Rotor Dynamics Analysis
,”
J. Sound Vib.
,
66
(
1
), pp.
119
140
.
4.
Greenhill
,
L. M.
,
Bickford
,
W. B.
, and
Nelson
,
H. D.
,
1985
, “
A Conical Beam Finite Element for Rotor Dynamics Analysis
,”
ASME J. Vib., Acoust., Stress, Reliab.
,
107
(
4
), pp.
421
430
.
5.
Vest
,
T. A.
, and
Darlow
,
M. S.
,
1990
, “
A Modified Conical Beam Element Based on Finite Element Analysis: Experimental Correlations
,”
ASME J. Vib. Acoust.
,
112
(
3
), pp.
350
354
.
6.
American Petroleum Institute
,
2002
, “
Axial and Centrifugal Compressors and Expander-compressors for Petroleum, Chemical and Gas Industry Services
,” API Publishing Services, Washington, DC, Standard No. API 617.
7.
Stephenson
,
R. W.
,
Rouch
,
K. E.
, and
Arora
,
R.
,
1989
, “
Modelling of Rotors With Axisymmetric Solid Harmonic Elements
,”
J. Sound Vib.
,
131
(
3
), pp.
431
443
.
8.
Stepheson
,
R. W.
, and
Rouch
,
K. E.
,
1993
, “
Modeling Rotating Shafts Using Axisymmetric Solid Finite Elements With Matrix Reduction
,”
ASME J. Vib. Acoust.
,
115
(
4
), pp.
484
489
.
9.
Greenhill
,
L. M.
, and
Lease
,
V. J.
,
2007
, “
Additional Investigations Into the Natural Frequencies and Critical Speeds of a Rotating, Flexible Shaft-Disk System
,”
ASME
Paper No. GT2007-28065.
10.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2001
,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
New York
.
11.
Stephenson
,
R. W.
, and
Rouch
,
K. E.
,
1992
, “
Generating Matrices of the Foundation Structure of a Rotor System From Test Data
,”
J. Sound Vib.
,
154
(
3
), pp.
467
484
.
12.
Vázquez
,
J. A.
, and
Barrett
,
L. E.
,
1999
, “
Transfer Function Representation of Flexible Supports and Casings of Rotating Machinery
,”
17th International Modal Analysis Conference
, Kissimmee, FL, Feb. 8–11, pp.
1328
1334
.
13.
Vázquez
,
J. A.
,
Barrett
,
L. E.
, and
Flack
,
R. D.
,
2000
, “
A Flexible Rotor on Flexible Bearing Supports: Stability and Unbalance Response
,”
ASME J. Vib. Acoust.
,
123
(
2
), pp.
137
144
.
14.
Vázquez
,
J. A.
,
Barrett
,
L. E.
, and
Flack
,
R. D.
,
2002
, “
Flexible Bearing Supports, Using Experimental Data
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
369
374
.
15.
Moore
,
J. J.
,
Vannini
,
G.
,
Camatti
,
M.
, and
Bianchi
,
P.
,
2010
, “
Rotordynamic Analysis of a Large Industrial Turbocompressor Including Finite Element Substructure Modeling
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p.
082401
.
16.
De Santiago
,
O.
, and
Abraham
,
E.
,
2008
, “
Rotordynamic Analysis of a Power Turbine Including Support Flexibility Effects
,”
ASME
Paper No. GT2008-50900.
17.
Levy
,
E. C.
,
1959
, “
Complex-Curve Fitting
,”
IRE Trans. Autom. Control
,
AC-4
(
1
), pp.
37
43
.
18.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Emami-Naeini
,
A.
,
2005
,
Feedback Control of Dynamic Systems
,
Prentice-Hall
,
Upper Saddle River, NJ
.
19.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), p.
380
.
20.
Rosenbrock
,
H. H.
,
1970
,
State-Space and Multivariable Theory
,
Wiley
,
New York
.
21.
Pace
,
I. S.
, and
Barnett
,
S.
,
1974
, “
Efficient Algorithms for Linear System Calculations—Part II Minimal Realization
,”
Int. J. Syst. Sci.
,
5
(
5
), pp.
413
424
.
22.
Van Dooren
,
P.
,
1981
, “
The Generalized Eigenstructure Problem in Linear System Theory
,”
IEEE Trans. Autom. Control
,
26
(
1
), pp.
111
129
.
You do not currently have access to this content.