The aircraft engine operates in various conditions. In consequence, the design of seals must take account of the seal clearance changes and the risk of rubbing. A small radial clearance of the rotor tip seal leads to the honeycomb rubbing in take-off conditions, and the leakage flow may increase in cruise conditions. The aim of this study is to compare two honeycomb seal configurations of the low-pressure gas turbine rotor. In the first configuration, the clearance is small and rubbing occurs. In the second,—the fins of the seal are shorter to eliminate rubbing. It is assumed that the real clearance in both configurations is the same. A study of the honeycomb geometrical model is performed to reduce the computational effort. The problem is investigated numerically using the RANS equations and the two-equation k–ω SST turbulence model. The honeycomb full structure is taken into consideration to show details of the fluid flow. Main parameters of the clearance and leakage flows are compared and discussed for the rotor different axial positions. An assessment of the leakage flow through the seal variants could support the design process.

References

References
1.
Stocker
,
H. L.
,
Cox
,
D. M.
, and
Holle
,
G. F.
,
1977
, “
Aerodynamic Performance of Conventional and Advanced Design Labyrinth Seals With Solid-Smooth Abradable, and Honeycomb Lands
,”
NASA
Lewis Research Center, Cleveland, OH, Report No. NASA-CR-135307.
2.
Wittig
,
S.
,
Schelling
,
U.
,
Kim
,
S.
, and
Jacobsen
,
K.
,
1987
, “
Numerical Predictions and Measurements of Discharge. Coefficients in Labyrinth Seals
,”
ASME
Paper No. 87-GT-188.
3.
Schramm
,
V.
,
Willenborg
,
K.
,
Kim
,
S.
, and
Wittig
,
S.
,
2002
, “
Influence of a Honeycomb Facing on the Flow Through a Stepped Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
124
(
1
), pp.
140
146
.
4.
Denecke
,
J.
,
2008
,
Rotierende Labyrinthdichtungen mit Honigwabenanstreifbelägen-Untersuchung der Wechselwirkung von Durchflussverhalten, Drallverlauf und Totaltemperaturänderung
,
Logos-Verlag
,
Berlin
, Germany.
5.
Kim
,
T. S.
, and
Cha
,
K. S.
,
2009
, “
Comparative Analysis of the Influence of Labyrinth Seal Configuration on Leakage Behavior
,”
J. Mech. Sci. Technol.
,
23
(
10
), pp.
2830
2838
.
6.
Anker
,
J. E.
, and
Mayer
,
J. F.
,
2002
, “
Simulation of the Interaction of Labyrinth Seal Leakage Flow and Main Flow in an Axial Turbine
,”
ASME
Paper No. GT2002-30348.
7.
Denecke
,
J.
,
Dullenkopf
,
K.
,
Wittig
,
S.
, and
Bauer
,
H.-J.
,
2005
, “
Experimental Investigation of the Total Temperature Increase and Swirl Development in Rotating Labyrinth Seals
,”
ASME
Paper No. GT2005-68677.
8.
Li
,
J.
,
Kong
,
S.
,
Yan
,
X.
,
Obi
,
S.
, and
Feng
,
Z.
,
2010
, “
Numerical Investigations on Leakage Performance of the Rotating Labyrinth Honeycomb Seal
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
062501
.
9.
Razak
,
A.
,
2007
,
Industrial Gas Turbines–Performance and Operability
,
Woodhead Publishing
,
Cambridge, UK
.
10.
Denecke
,
J.
,
Schramm
,
V.
,
Kim
,
S.
, and
Wittig
,
S.
,
2003
, “
Influence of Rub-Grooves on Labyrinth Seal Leakage
,”
ASME J. Turbomach.
,
125
(3), pp.
387
393
.
11.
Collins
,
D.
,
Teixei
,
J. A.
,
Crudgington
,
P.
, and
Ivey
,
P. C.
,
2006
, “
Numerical Modeling of Three Dimensional Honeycomb Labyrinth Seals Employing a Simplified Approach
,”
ASME
Paper No. GT2006-90850.
12.
Biester
,
M.-O.
,
Mueller
,
L.
,
Seume
,
J. R.
, and
Guendogdu
,
Y.
,
2011
, “
Time-Resolved Numerical Investigation of the Interaction of Labyrinth Seal Leakage and Main-Flow in a 1.5-Stage LP Turbine
,”
ASME
Paper No. GT2011-45883.
13.
Gao
,
J.
,
Zheng
,
K.
, and
Wang
,
Z.
,
2013
, “
Effect of Honeycomb Seals on Loss Characteristics in Shroud Cavities of an Axial Turbine
,”
Chin. J. Mech. Eng.
,
26
(
1
), pp.
69
77
.
14.
Wróblewski
,
W.
,
Dykas
,
S.
,
Bochon
,
K.
, and
Rulik
,
S.
,
2010
, “
Optimization of Tip Seal With Honeycomb Land in LP Counter Rotating Gas Turbine Engine
,”
TASK Q.
,
14
, pp.
189
207
.
15.
Mahle
,
I.
,
2010
, “
Improving the Interaction Between Leakage Flows and Main Flow in a Low Pressure Turbine
,”
ASME
Paper No. GT2010-22448.
You do not currently have access to this content.