Intermittency of renewable electricity generation poses a challenge to thermal power plants. While power plants in the public sector see a decrease in operating hours, the utilization of industrial power plants is mostly unaffected because process steam has to be provided. This study investigates to what extent the load of a combined heat and power (CHP) plant can be reduced while maintaining a reliable process steam supply. A dynamic process model of an industrial combined CHP plant is developed and validated with operational data. The model contains a gas turbine (GT), a single pressure heat recovery system generator (HRSG) with supplementary firing and an extraction condensing steam turbine. Technical limitations of the gas turbine, the supplementary firing, and the steam turbine constrain the load range of the plant. In consideration of these constraints, different operation strategies are performed at variable loads using dynamic simulation. A simulation study shows feasible load changes in 5 min for provision of secondary control reserve (SCR). The load change capability of the combined cycle plant under consideration is mainly restricted by the water–steam cycle. It is shown that both the low pressure control valve (LPCV) of the extraction steam turbine and the high pressure bypass control valve are suitable to ensure the process steam supply during the load change. The controllability of the steam turbine load and the process stability are sufficient as long as the supplementary is not reaching the limits of the operating range.

References

References
1.
Puga
,
J. N.
,
2010
, “
The Importance of Combined Cycle Generating Plants in Integrating Large Levels of Wind Power Generation
,”
Electr. J.
,
23
(
7
), pp.
33
44
.
2.
Lalor
,
G.
,
Ritchie
,
J.
,
Flynn
,
D.
, and
O'Malley
,
M. J.
,
2005
, “
The Impact of Combined-Cycle Gas Turbine Short-Term Dynamics on Frequency Control
,”
IEEE Trans. Power Syst.
,
20
(
3
), pp.
1456
1464
.
3.
Campos
,
F. A.
, and
Reneses
,
J.
,
2014
, “
Energy and Reserve Co-optimization of a Combined Cycle Plant Using Mixed Integer Linear Programming
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
101702
.
4.
Verband der Netzbetreiber
,
2007
, “
TransmissionCode 2007
,” Berlin, Germany, accessed Aug., https://www.bdew.de/internet.nsf/id/A2A0475F2FAE8F44C12578300047C92F/$file/TransmissionCode.pdf
5.
Brännlund
,
H.
,
Rahimi
,
S.
,
Eriksson
,
J. O.
, and
Thorgrennd
,
M.
,
2012
, “
Industrial Implementation of Economic Dispatch for Co-Generation Systems
,”
IEEE
Power and Energy Society General Meeting
, San Diego, CA, July 22–26.
6.
Dolgicers
,
A.
,
Guseva
,
S.
, and
Sauhats
,
A.
,
2009
, “
Market and Environmental Dispatch of Combined Cycle CHP Plant
,”
IEEE
Bucharest PowerTech Conference
,
Bucharest
,
Romania
, Jun. 28–Jul. 2.
7.
Shin
,
J. Y.
,
Jeon
,
Y. J.
,
Maeng
,
D. J.
,
Kim
,
J. S.
, and
Ro
,
S. T.
,
2002
, “
Analysis of the Dynamic Characteristics of a Combined-Cycle Power Plant
,”
Energy
,
27
(
12
), pp.
1085
1098
.
8.
Ruchti
,
C.
,
Olia
,
H.
,
Franitza
,
K.
,
Ehrsam
,
A.
, and
Bauver
,
W.
,
2011
, “
Combined Cycle Power Plants as Ideal Solution to Balance Grid Fluctuations—Fast Start-up Capabilities
,”
43th Colloquium of Power Plant Technology
, Dresden, Germany, Sept. 18–19.
9.
Ahluwalia
,
K. S.
, and
Domenichini
,
R.
,
1990
, “
Dynamic Modeling of a Combined-Cycle Plant
,”
ASME J. Eng. Gas Turbines Power
,
112
(
2
), pp.
164
167
.
10.
Akiyama
,
T.
,
Matsumoto
,
H.
, and
Asakura
,
K.
,
1997
, “
Dynamic Simulation and Its Application to Optimum Operation Support for Advanced Combined Cycle Plants
,”
Energy Convers. Manage.
,
38
(
15–17
), pp.
1709
1723
.
11.
Gülen
,
S. C.
, and
Kim
,
K.
,
2014
, “
Gas Turbine Combined Cycle Dynamic Simulation: A Physics-Based Simple Approach
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011601
.
12.
Rowen
,
W. I.
,
1983
, “
Simplified Mathematical Representations of Heavy Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
105
(
4
), pp.
865
869
.
13.
Rowen
,
W. I.
,
1992
, “
Simplified Mathematical Representations of Single Shaft Gas Turbines in Mechanical Drive Service
,”
ASME
Paper No. 92-GT-022.
14.
Crosa
,
G.
,
Pittaluga
,
F.
,
Martinengo
,
A. T.
,
Beltrami
,
F.
,
Torelli
,
A.
, and
Traverso
,
F.
,
1996
, “
Heavy-Duty Gas Turbine Plant Aerothermodynamic Simulation Using Simulink
,”
ASME
Paper No. 96-TA-022.
15.
Kim
,
J. H.
,
Song
,
T. W.
,
Kim
,
T. S.
, and
Ro
,
S. T.
,
2001
, “
Model Development and Simulation of Transient Behavior of Heavy Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
589
594
.
16.
Peet
,
W. J.
, and
Leung
,
T. K. P.
,
1995
, “
Development and Application of a Dynamic Simulation Model for a Drum Type Boiler With Turbine Bypass System
,”
International Power Engineering Conference
, Singapore, Mar.
17.
Alobaid
,
F.
,
Pfeiffer
,
S.
,
Epple
,
B.
,
Seon
,
C. Y.
, and
Kim
,
H. G.
,
2012
, “
Fast Start-Up Analyses for Benson Heat Recovery Steam Generator
,”
Energy
,
46
(
1
), pp.
295
309
.
18.
De Mello
,
F. P.
,
1991
, “
Boiler Models for System Dynamic Performance Studies
,”
IEEE Trans. Power Appar. Syst.
,
6
(
1
), pp.
66
74
.
19.
Adam
,
E. J.
, and
Marchetti
,
J. L.
,
1999
, “
Dynamic Simulation of Large Boilers With Natural Recirculation
,”
Comput. Chem. Eng.
,
23
(
8
), pp.
1031
1040
.
20.
Walter
,
H.
,
2007
, “
Dynamic Simulation of Natural Circulation Steam Generators With the Use of Finite-Volume-Algorithms—A Comparison of Four Algorithms
,”
Simul. Modell. Pract. Theory
,
15
(
5
), pp.
565
588
.
21.
Walter
,
H.
, and
Hofmann
,
R.
,
2011
, “
How Can the Heat Transfer Correlations for Finned-Tubes Influence the Numerical Simulation of the Dynamic Behavior of a Heat Recovery Steam Generator?
,”
Appl. Therm. Eng.
,
31
(
4
), pp.
405
417
.
22.
Jolly
,
S.
,
Gurevich
,
A.
, and
Pasha
,
A.
,
1994
, “
Modeling of Start-Up Behavior of Combined Cycle HRSGs
,”
ASME
Paper No. 94-GT-370.
23.
Bausa
,
J.
, and
Tsatsaronis
,
G.
,
2001
, “
Dynamic Optimization of Start-Up and Load-Increasing Processes in Power Plants: Part I—Method
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
246
250
.
24.
Bausa
,
J.
, and
Tsatsanoris
,
G.
,
2001
, “
Dynamic Optimization of Startup and Load-Increasing Processes in Power Plants—Part II: Application
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
251
254
.
25.
Alobaid
,
F.
,
Postler
,
R.
,
Strohle
,
J.
,
Epple
,
B.
, and
Hyun-Gee
,
K.
,
2008
, “
Modeling and Investigation Start-Up Procedures of a Combined Cycle Power Plant
,”
Appl. Energy
,
85
(
12
), pp.
1173
1189
.
26.
Alobaid
,
F.
,
Karner
,
K.
,
Belz
,
J.
,
Epple
,
B.
, and
Kim
,
H. G.
,
2014
, “
Numerical and Experimental Study of a Heat Recovery Steam Generator During Start-Up Procedure
,”
Energy
,
64
, pp.
1057
1070
.
27.
Kim
,
T. S.
,
Lee
,
D. K.
, and
Ro
,
S. T.
,
2000
, “
Analysis of Thermal Stress Evolution in the Steam Drum During Start-Up of a Heat Recovery Steam Generator
,”
Appl. Therm. Eng.
,
20
(
11
), pp.
977
992
.
28.
Casella
,
F.
,
Farina
,
M.
,
Righetti
,
F.
,
Scattolini
,
R.
,
Faille
,
D.
,
Davelaar
,
F.
, and
Dumur
,
D.
,
2011
, “
An Optimization Procedure of the Start-Up of Combined Cycle Power Plants
,” 18th
IFAC
World Congress, Milano, Italy, Aug. 28–Sept. 2.
29.
Gülen
,
S. C.
,
2013
, “
Gas Turbine Combined Cycle Fast Start: The Physics Behind the Concept
,”
Power Eng.
,
117
(
6
), pp.
40
45
.
30.
Aurora
,
C.
,
Diehl
,
M.
,
Kuhl
,
P.
,
Magni
,
L.
, and
Scattolini
,
R.
,
2005
, “
Nonlinear Model Predictive Control of Combined Cycle Power Plants
,” 16th
IFAC
World Congress
, pp.
128
132
.
31.
Ulfsnes
,
R. E.
,
Bolland
,
O.
, and
Jordal
,
K.
,
2003
, “
Modeling and Simulation of Transient Performance of the Semi-Closed O2/CO2 Gas Turbine Cycle for CO2-Capture
,”
ASME
Paper No. GT2003-38068.
32.
Casella
,
F.
, and
Colonna
,
P.
,
2012
, “
Dynamic Modeling of IGCC Power Plants
,”
Appl. Therm. Eng.
,
35
, pp.
91
111
.
33.
Apros, Process Simulation Software, Fortum Power Solutions, Fortum, Finland.
34.
Hänninen
,
M.
, and
Ylijoki
,
J.
,
2008
, “
The One-Dimensional Separate Two-Phase Flow Model of APROS
,” VTT, Espoo, Finland,
VTT Research Notes 2443
.
35.
VDI Gesellschaft
,
2010
,
VDI Heat Atlas
,
2nd ed.
,
Springer-Verlag
,
Heidelberg, Germany
.
36.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass
,
7th ed.
,
Wiley
,
Hoboken, NJ
.
37.
Kehlhofer
,
R.
,
Rukes
,
B.
,
Hannemann
,
F.
, and
Stirnimann
,
F.
,
2009
,
Combined Cycle Gas and Steam Turbine Power Plants
,
3rd ed.
,
PennWell Corp.
,
Tulsa, OK
, pp.
215
223
.
You do not currently have access to this content.