High overall pressure ratio (OPR) engine cycles for reduced NOx emissions will generate new aggravated requirements and boundary conditions by implementing low emission combustion technologies into advanced engine architectures. Lean burn combustion systems will have a significant impact on the temperature and velocity traverse at the combustor exit. Lean burn fuel injectors dominate the combustor exit conditions. This is due to the fact that they pass a majority of the total combustor flow, and to the lack of mixing jets like in a conventional combustor. With the transition to high-pressure engines, it is essential to fully understand and determine the high energetic interface between combustor and turbine to avoid excessive cooling. Velocity distributions and their fluctuations at the combustor exit for lean burn are of special interest as they can influence the efficiency and capacity of the turbine. A lean burn single-sector combustor was designed and built at DLR, providing optical access to its rectangular exit section. The sector was operated with a fuel-staged lean burn injector. Measurements were performed under idle and cruise operating conditions. Two velocity measurement techniques were used in the demanding environment of highly luminous flames under elevated pressures: particle image velocimetry (PIV) and filtered Rayleigh scattering (FRS). The latter was used for the first time in an aero-engine combustor environment. In addition to a conventional signal detection arrangement, FRS was also applied with an endoscope for signal collection, to assess its practicality for a potential future application in a full annular combustor with restricted optical access.

References

References
1.
von der Bank
,
R.
,
Donnerhack
,
S.
,
Rae
,
A.
,
Cazalens
,
M.
,
Lundbladh
,
A.
, and
Dietz
,
M.
,
2014
, “
LEMCOTEC—Improving the Core Engine Thermal Efficiency
,”
ASME
Paper No. GT2014-25040.
2.
Raynaud
,
F.
,
Eggels
,
R. L. G. M.
,
Staufer
,
M.
, and
Sadiki
,
A.
,
2015
, “
Toward Unsteady Simulation of Combustor-Turbine Interaction Using an Integrated Approach
,”
ASME
Paper No. GT2015-42110.
3.
Andreini
,
A.
,
Facchini
,
B.
,
Insinna
,
M.
,
Mazzei
,
L.
, and
Salvadori
,
S.
,
2015
, “
Hybrid RANS-LES Modeling of a Hot Streak Generator Oriented to the Study of Combustor-Turbine Interaction
,”
ASME
Paper No. GT2015-42402.
4.
Schmid
,
G.
,
Krichbaum
,
A.
,
Werschnik
,
H.
, and
Schiffer
,
H.-P.
,
2014
, “
The Impact of Realistic Inlet Swirl in a 1 1/2 Stage Axial Turbine
,”
ASME
Paper No. GT2014-26716.
5.
Cresci
,
I.
,
Ireland
,
P. T.
, and
Bacic.
,
M.
,
2015
, “
Velocity and Turbulence Intensity Profiles Downstream of a Long Reach Endwall Double Row of Film Cooling Holes in a Gas Turbine Combustor Representative Environment
,”
ASME
Paper No. GT2015-42307.
6.
Bacci
,
T.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Champion
,
J.-L.
,
2015
, “
Flowfield and Temperature Profiles Measurements on a Combustor Simulator Dedicated to Hot Streaks Generation
,”
ASME
Paper No. GT2015-42217.
7.
Bacci
,
T.
,
Facchini
,
B.
,
Picchi
,
A.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Champion
,
J.-L.
,
2015
, “
Turbulence Field Measurements at the Exit of a Combustor Simulator Dedicated to Hot Streaks Generation
,”
ASME
Paper No. GT2015-42218.
8.
Luque
,
S.
,
Kanjirakkad
,
V.
,
Aslanidou
,
I.
,
Lubbock
,
R.
,
Rosic
,
B.
, and
Uchida
,
S.
,
2015
, “
A New Experimental Facility to Investigate Combustor–Turbine Interactions in Gas Turbines With Multiple Can Combustors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
051503
.
9.
Cha
,
C. M.
,
Hong
,
S.
,
Ireland
,
P. T.
,
Denman
,
P.
, and
Savarianandam
,
V.
,
2012
, “
Experimental and Numerical Investigation of Combustor-Turbine Interaction Using an Isothermal, Nonreacting Tracer
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
081501
.
10.
Pitz
,
R. W.
,
Wehrmeyer
,
J. A.
,
Ribarov
,
L. A.
,
Oguss
,
D. A.
,
Batliwala
,
F.
,
DeBarber
,
P. A.
,
Deusch
,
S.
, and
Dimotakis
,
P. E.
,
2000
, “
Unseeded Molecular Flow Tagging in Cold and Hot Flows Using Ozone and Hydroxyl Tagging Velocimetry
,”
Meas. Sci. Technol.
,
11
(
9
), pp.
1259
1271
.
11.
Ribarov
,
L. A.
,
Wehrmeyer
,
J. A.
,
Hu
,
S.
, and
Pitz
,
R. W.
,
2004
, “
Multiline Hydroxyl Tagging Velocimetry Measurements in Reacting and Nonreacting Experimental Flows
,”
Exp. Fluids
,
37
(
1
), pp.
65
74
.
12.
Ribarov
,
L. A.
,
Hu
,
S.
,
Wehrmeyer
,
J. A.
, and
Pitz
,
R. W.
,
2004
, “
Hydroxyl Tagging Velocimetry Method and Optimization: Signal Intensity and Spectroscopy
,”
Appl. Opt.
,
44
(
31
), pp.
6616
6626
.
13.
Schneider
,
D.
,
Meier
,
U.
,
Quade
,
W.
,
Koopman
,
J.
,
Aumeier
,
T.
,
Langfeld
,
A.
,
Behrendt
,
T.
,
Hassa
,
C.
, and
Rackwitz
,
L.
,
2010
, “
A New Test Rig for Laser Optical Investigations of Lean Jet Engine Burners
,”
ICAS Paper No. 2010-4.3.3
.
14.
Meier
,
U.
,
Freitag
,
S.
,
Heinze
,
J.
,
Lange
,
L.
,
Magens
,
E.
,
Schroll
,
M.
,
Willert
,
C.
,
Hassa
,
C.
,
Bagchi
,
I. K.
,
Lazik
,
W.
, and
Whiteman
,
M.
,
2013
, “
Characterization of a Lean Burn Module Air Blast Pilot Injector With Laser Techniques
,”
ASME J. Eng. Gas Turbines Power
,
135
(12), p.
121508
.
15.
Meier
,
U.
,
Heinze
,
J.
,
Magens
,
E.
,
Schroll
,
M.
,
Hassa
,
C.
,
Bake
,
S.
, and
Doerr
,
Th.
,
2015
, “
Optically Accessible Multisector Combustor: Application and Challenges of Laser Techniques at Realistic Operating Conditions
,”
ASME
Paper No. GT2015-43391.
16.
Adrian
,
R. J.
,
1991
, “
Particle-Imaging Techniques for Experimental Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
261
304
.
17.
Raffel
,
M.
,
Willert
,
C.
,
Wereley
,
S.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry—A Practical Guide
,
2nd ed.
,
Springer
,
Berlin
.
18.
Westerweel
,
J.
,
2002
, “
Theoretical Analysis of the Measurement Precision in Particle Image Velocimetry
,”
Exp. Fluids
,
29
(
1
), pp.
S3
S12
.
19.
Miles
,
R. B.
,
Lempert
,
W. R.
, and
Forkey
,
J. N.
,
2001
, “
Laser Rayleigh Scattering
,”
Meas. Sci. Technol.
,
12
(
5
), p.
R33
.
20.
Miles
,
R.
, and
Lempert
,
W.
,
1990
, “
Two-Dimensional Measurement of Density, Velocity, and Temperature in Turbulent High-Speed Air Flows by UV {Rayleigh} Scattering
,”
Appl. Phys. B
,
51
(
1
), pp.
1
7
.
21.
Forkey
,
J.
,
Finkelstein
,
N.
,
Lempert
,
W.
, and
Miles
,
R.
,
1996
, “
Demonstration and Characterization of Filtered Rayleigh Scattering for Planar Velocity Measurements: Aerodynamic Measurement Technology
,”
AIAA J.
,
34
(
3
), pp.
442
448
.
22.
Doll
,
U.
,
Stockhausen
,
G.
, and
Willert
,
C.
,
2014
, “
Endoscopic Filtered Rayleigh Scattering for the Analysis of Ducted Gas Flows
,”
Exp. Fluids
,
55
(
3
), pp.
1
13
.
23.
Pitz
,
R.
,
Cattolica
,
R.
,
Robben
,
F.
, and
Talbot
,
L.
,
1976
, “
Temperature and Density in a Hydrogen-Air Flame From Rayleigh Scattering
,”
Combust. Flame
,
27
, pp.
313
320
.
You do not currently have access to this content.