This work describes the main findings of a computational fluid dynamics (CFD) analysis intended to accurately investigate the flow field and wall heat transfer as a result of the mutual interaction between a swirling flow generated by a lean burn injection system and a slot–effusion liner cooling system. In order to overcome some limitations of Reynolds-averaged Navier–Stokes (RANS) approach, the simulations were performed with shear stress transport (SST)–scale-adaptive simulation (SAS), a hybrid RANS–large eddy simulation (LES) model. Moreover, the significant computational effort due to the presence of more than 600 effusion holes was limited exploiting two different modeling strategies: a homogeneous model based on the application of uniform boundary conditions on both aspiration and injection sides, and another solution that provides a coolant injection through point mass sources within a single cell. CFD findings were compared to experimental results coming from an investigation carried out on a three-sector linear rig. The comparison pointed out that advanced modeling strategies, i.e., based on discrete mass sources, are able to reproduce the effects of mainstream–coolant interactions on convective heat loads. By validating the approach through a benchmark against time-averaged quantities, the transient data acquired were examined in order to better understand the unsteady behavior of the thermal load through a statistical analysis, providing useful information with a design perspective.

References

References
1.
ICAO
,
2010
, “
Environmental Report, Aviation and Climate Change
,”
International Civil Aviation Organization
, Montreal, Canada.
2.
Lazik
,
W.
, and
Doerr
,
T.
,
2008
, “
Development of Lean-Burn Low-NOx Combustion Technology at Rolls-Royce Deutschland
,”
ASME
Paper No. GT2008-51115.
3.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion
,
CRC Press
, Boca Raton, FL.
4.
Behrendt
,
T.
,
Hassa
,
C.
, and
Gerendas
,
M.
,
2008
, “
Characterisation of Advanced Combustor Cooling Concepts Under Realistic Operating Conditions
,”
ASME
Paper No. GT2008-51191.
5.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Gerendas
,
M.
,
2012
, “
Impact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
121503
.
6.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Gerendas
,
M.
,
2013
, “
Cooling Efficiency for Assessing the Cooling Performance of an Effusion Cooled Combustor Liner
,”
ASME
Paper No. GT2013-94304.
7.
Andreini
,
A.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Turrini
,
F.
,
2014
, “
Experimental Investigation of the Flow Field and the Heat Transfer on a Scaled Cooled Combustor Liner With Realistic Swirling Flow Generated by a Lean-Burn Injection System
,”
ASME J. Turbomach.
,
137
(
3
), p.
031012
.
8.
Andreini
,
A.
,
Becchi
,
R.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Turrini
,
F.
,
2015
, “
Effect of Slot Injection and Effusion Array on the Liner Heat Transfer Coefficient of a Scaled Lean Burn Combustor With Realistic Swirling Flow
,”
ASME J. Eng. Gas Turbines Power
,
138
(
4
), p.
041501
.
9.
Andreini
,
A.
,
Becchi
,
R.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Picchi
,
A.
, and
Turrini
,
F.
,
2015
, “
Adiabatic Effectiveness and Flow Field Measurements in a Realistic Effusion Cooled Lean Burn Combustor
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
031506
.
10.
Mazzei
,
L.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Turrini
,
F.
,
2015
, “
Impact of Swirl Flow on Combustor Liner Heat Transfer and Cooling: A Numerical Investigation With Hybrid Reynolds-Averaged Navier Stokes-Large Eddy Simulation Models
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p. 051504.
11.
Kao
,
Y.-H.
,
Tambe
,
S. B.
, and
Jeng
,
S.-M.
,
2014
, “
Aerodynamics Study of a Linearly-Arranged 5-Swirler Array
,”
ASME
Paper No. GT2014-25094.
12.
Syred
,
N.
,
2006
, “
Review of Oscillation Mechanisms and the Role of the Precessing Vortex core (PVC) in Swirl Combustion Systems
,”
Elsevier Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.
13.
Andreini
,
A.
,
Bacci
,
T.
,
Insinna
,
M.
,
Mazzei
,
L.
, and
Salvadori
,
S.
,
2016
, “
Hybrid RANS-LES Modeling of the Aero-Thermal Field in an Annular Hot Streak Generator for the Study of Combustor-Turbine Interaction
,”
ASME
Paper No. GT2016-56583.
14.
Puggelli
,
S.
,
Bertini
,
D.
,
Mazzei
,
L.
, and
Andreini
,
A.
,
2016
, “
Assessment of Scale Resolved CFD Methods for the Investigation of Lean Burn Spray Flames
,”
ASME J. Eng. Gas Turbines Power
(in press).
15.
Mendez
,
S.
, and
Nicoud
,
F.
,
2008
, “
Adiabatic Homogeneous Model for Flow Around a Multiperforated Plate
,”
AIAA J.
,
46
(
10
), pp.
2623
2633
.
16.
Voigt
,
S.
,
Noll
,
B.
, and
Aigner
,
M.
,
2012
, “
Development of a Macroscopic CFD Model for Effusion Cooling Applications
,”
ASME
Paper No. GT2012-68251.
17.
Andreini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Colantuoni
,
S.
, and
Turrini
,
F.
,
2013
, “
Local Source Based CFD Modeling of Effusion Cooling Holes: Validation and Application to an Actual Combustor Test Case
,”
ASME J. Gas Turbines Power
,
136
(1), p.
011506
.
18.
Andreini
,
A.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Bellocci
,
L.
, and
Turrini
,
F.
,
2014
, “
Assessment of Aero-Thermal Design Methodology for Effusion Cooled Lean Burn Annular Combustors
,”
ASME
Paper No. GT2014-26764.
19.
Andrei
,
L.
,
Innocenti
,
L.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Winchler
,
L.
,
2016
, “
Film Cooling Modelling for Gas Turbine Nozzles and Blades: Validation and Application
,”
ASME J. Turbomach.
(in press).
20.
Kern
,
M.
,
Marinov
,
S.
,
Habisreuther
,
P.
,
Zarzalis
,
N.
,
Peschiulli
,
A.
, and
Turrini
,
F.
,
2011
, “
Characteristics of an Ultra-Lean Swirl Combustor Flow by LES and Comparison to Measurements
,”
ASME
Paper No. GT2011-45300.
21.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
ASME J. Mech. Eng.
,
75
(
1
), pp.
3
8
.
22.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2004
, “
Re-Visiting the Turbulent Scale Equation
,”
IUTAM Symposium on One Hundred Years of Boundary Layer Research
, Göttingen, Germany, Aug. 12–14.
23.
Menter
,
F. R.
,
2012
, “
Best Practice: Scale-Resolving Simulations in ansys CFD
,”
ANSYS Germany GmbH
, Darmstadt, Germany.
24.
Egorov
,
Y.
, and
Menter
,
F. R.
,
2007
, “
Development and Application of SST-SAS Turbulence Model in the DESIDER Project
,”
Second Symposium on Hybrid RANS-LES Methods
.
25.
Andrei
,
L.
,
Andreini
,
A.
,
Bianchini
,
C.
,
Facchini
,
B.
,
Mazzei
,
L.
, and
Turrini
,
F.
,
2015
, “
Investigation of the Effect of a Realistic Flow Field on the Adiabatic Effectiveness of an Effusion-Cooled Combustor
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
051501
.
26.
Koupper
,
C.
,
Gicquel
,
L.
,
Duchaine
,
F.
, and
Bonneau
,
G.
,
2015
, “
Advanced Combustor Exit Plane Temperature Diagnostics Based on Large Eddy Simulations
,”
Flow Turbul. Combust.
,
95
(
1
), pp.
79
96
.
You do not currently have access to this content.