Wind turbine design optimization is typically performed considering a given wind distribution. However, turbines so designed often end up being used at sites characterized by different wind distributions, resulting in significant performance penalties. This paper presents a probabilistic integrated multidisciplinary approach to the design optimization of multimegawatt wind turbines accounting for the stochastic variability of the mean wind speed. The presented technology is applied to the design of a 5 MW rotor for use at sites of wind power class from 3 to 7, where the mean wind speed at 50 m above the ground ranges from 6.4 to 11.9 m/s. Assuming the mean wind speed to vary stochastically in such range, the rotor design is optimized by minimizing mean and standard deviation of the levelized cost of energy (LCOE). Airfoil shapes, spanwise distributions of blade chord and twist, blade internal structural layup, and rotor speed are optimized concurrently, subject to structural and aeroelastic constraints. The probabilistically designed turbine achieves a more favorable probabilistic performance than the initial baseline turbine. The presented probabilistic design framework is portable and modular in that any of its analysis modules can be replaced with counterparts of user-selected fidelity.

References

References
1.
Martins
,
J. R. R. A.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
.
2.
Fuglsang
,
P.
, and
Madsen
,
H. A.
,
1999
, “
Optimization Method for Wind Turbine Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
80
(
1–2
), pp.
191
206
.
3.
Diveux
,
T.
,
Sebastian
,
P.
,
Bernard
,
D.
,
Puiggali
,
J. R.
, and
Grandidier
,
J. Y.
,
2001
, “
Horizontal Axis Wind Turbine Systems: Optimization Using Genetic Algorithms
,”
Wind Energy
,
4
(
4
), pp.
151
171
.
4.
Fuglsang
,
P.
, and
Thomsen
,
K.
,
2001
, “
Site-Specific Design Optimization of 1.5-2.0 MW Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
123
(
4
), pp.
296
303
.
5.
Fuglsang
,
P.
,
Bak
,
C.
,
Schepers
,
J. G.
,
Bulder
,
B.
,
Cockerill
,
T. T.
,
Claiden
,
P.
,
Olesen
,
A.
, and
van Rossen
,
R.
,
2002
, “
Site-Specific Design Optimization of Wind Turbines
,”
Wind Energy
,
5
(
4
), pp.
261
279
.
6.
Kenway
,
G.
, and
Martins
,
J. R. R. A.
,
2008
, “
Aerostructural Shape Optimization of Wind Turbine Blades Considering Site-Specific Winds
,”
AIAA
Paper No. 2008-6025.
7.
Xudong
,
W.
,
Shen
,
W. Z.
,
Zhu
,
W. J.
,
Sørensen
,
J. N.
, and
Jin
,
C.
,
2009
, “
Shape Optimization of Wind Turbine Blades
,”
Wind Energy
,
12
(
8
), pp.
781
803
.
8.
Maki
,
K.
,
Sbragio
,
R.
, and
Vlahopoulos
,
N.
,
2012
, “
System Design of a Wind Turbine Using a Multi-Level Optimization Approach
,”
Renewable Energy
,
43
, pp.
101
110
.
9.
Bottasso
,
C. L.
,
Campagnolo
,
F.
, and
Croce
,
A.
,
2012
, “
Multi-Disciplinary Constrained Optimization of Wind Turbines
,”
Multibody Syst. Dyn.
,
27
(
1
), pp.
21
53
.
10.
Vesel
,
R. W.
, and
McNamara
,
J. J.
,
2014
, “
Performance Enhancement and Load Reduction of a 5 MW Wind Turbine Blade
,”
Renewable Energy
,
66
, pp.
391
401
.
11.
Park
,
G. J.
,
Lee
,
T. H.
,
Lee
,
K. H.
, and
Hwang
,
K. H.
,
2006
, “
Robust Design: An Overview
,”
AIAA J.
,
44
(
1
), pp.
181
191
.
12.
Petrone
,
G.
,
de Nicola
,
C.
,
Quagliarella
,
D.
,
Witteveen
,
J.
, and
Iaccarino
,
G.
,
2011
, “
Wind Turbine Optimization Under Uncertainty With High Performance Computing
,”
AIAA
Paper No. 3011-3806.
13.
Campobasso
,
M. S.
,
Minisci
,
E.
, and
Caboni
,
M.
,
2014
, “
Aerodynamic Design Optimization of Wind Turbine Rotors Under Geometric Uncertainty
,”
Wind Energy
,
19
(
1
), pp.
51
65
.
14.
Padulo
,
M.
,
Campobasso
,
M.
, and
Guenov
,
M.
,
2011
, “
A Novel Uncertainty Propagation Method for Robust Aerodynamic Design
,”
AIAA J.
,
49
(
3
), pp.
530
543
.
15.
Caboni
,
M.
,
Minisci
,
E.
, and
Campobasso
,
M. S.
,
2014
, “
Robust Aerodynamic Design Optimization of Horizontal Axis Wind Turbine Rotors
,”
Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences
(Computational Methods in Applied Sciences, Vol. 36)
D.
Greiner
,
B.
Galván
,
J.
Periaux
,
N.
Gauger
,
K.
Giannakoglou
, and
G.
Winter
, eds.,
Springer
,
Berlin
.
16.
Ning
,
S. A.
,
Damiani
,
R.
, and
Moriarty
,
P. J.
,
2014
, “
Objectives and Constraints for Wind Turbine Optimization
,”
ASME J. Sol. Energy Eng.
,
136
(
4
), p.
041010
.
17.
Ashuri
,
T.
,
Zaaijer
,
M. B.
,
Martins
,
J. R. R. A.
,
van Bussel
,
G. J. W.
, and
van Kuik
,
G. A. M.
,
2014
, “
Multidisciplinary Design Optimization of Offshore Wind Turbines for Minimum Levelized Cost of Energy
,”
Renewable Energy
,
68
, pp.
893
905
.
18.
Bottasso
,
C. L.
,
Croce
,
A.
,
Sartori
,
L.
, and
Grasso
,
F.
,
2014
, “
Free-Form Design of Rotor Blades
,”
J. Phys.: Conf. Ser.
,
524
(
1
), p.
012041
.
19.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO,
Technical Report No. NREL/TP-500-38060
.
20.
Drela
,
M.
, “
xfoil: Subsonic Airfoil Development System
,” MIT, Cambridge, MA, accessed Dec. 30, 2015, http://web.mit.edu/drela/Public/web/xfoil/
21.
Spera
,
D.
,
2008
, “
Models of Lift and Drag Coefficients of Stalled and Unstalled Airfoils in Wind Turbines and Wind Tunnels
,” National Aeronautics and Space Administration, Cleveland, OH,
Technical Report No. NASA/CR-2008-215434
.
22.
Timmer
,
W.
, and
van Rooij
,
R.
,
2003
, “
Summary of the Delft University Wind Turbine Dedicated Airfoils
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
488
496
.
23.
Sørensen
,
N.
,
2009
, “
CFD Modelling of Laminar-Turbulent Transition for Airfoils and Rotors Using the γ−Rẽθ Model
,”
Wind Energy
,
12
(
8
), pp.
715
733
.
24.
Aranake
,
A.
,
Lakshminarayan
,
V.
, and
Duraysami
,
K.
,
2015
, “
Computational Analysis of Shrouded Wind Turbine Configurations Using a 3-Dimensional RANS Solver
,”
Renewable Energy
,
75
, pp.
818
832
.
25.
Jonkman
,
J.
, “
FAST: An Aeroelastic Computer-Aided Engineering (CAE) Tool for Horizontal Axis Wind Turbines
,” National Renewable Energy Laboratory, Golden, CO, accessed Dec. 30, 2015, https://nwtc.nrel.gov/FAST
26.
Laino
,
D. J.
, “
AeroDyn: A Time-Domain Wind Turbine Aerodynamics Module
,” National Renewable Energy Laboratory, Golden, CO, accessed Dec. 30, 2015, https://nwtc.nrel.gov/AeroDyn
27.
Manwell
,
J.
,
McGowan
,
J.
, and
Rogers
,
A.
,
2002
,
Wind Energy Explained. Theory, Design and Application
,
Wiley
,
New York
.
28.
Sale
,
D. C.
, “
co-blade: Software for Analysis and Design of Composite Blades
,” accessed Dec. 30, 2015, https://code.google.com/p/co-blade/
29.
Bir
,
G.
, “
bmodes: Software for Computing Rotating Blade Coupled Modes
,” National Renewable Energy Laboratory, Golden, CO, accessed Dec. 30, 2015, https://nwtc.nrel.gov/BModes
30.
Fingersh
,
L.
,
Hand
,
M.
, and
Laxson
,
A.
,
2006
, “
Wind Turbine Design Cost and Scaling Model
,” National Renewable Energy Laboratory, Golden, CO,
Technical Report No. NREL/TP-500-40566
.
31.
Griffith
,
D. T.
, and
Ashwill
,
T. D.
,
2011
, “
The Sandia 100-Meter All-Glass Baseline Wind Turbine Blade: SNL100-00
,” Sandia National Laboratories, Albuquerque, NM,
Technical Report No. SAND2011-3779
.
32.
IEC, 2008, 61400-1
, “Wind Turbines,” 3rd ed., International Electrotechnical Commission, Geneva, Switzerland,
IEC
Standard No. 61400-3.
33.
Zang
,
C.
,
Friswell
,
M.
, and
Mottershead
,
J.
,
2005
, “
A Review of Robust Optimal Design and Its Application in Dynamics
,”
Comput. Struct.
,
83
(4–5), pp.
315
326
.
34.
Das
,
I.
, and
Dennis
,
J.
,
1997
. “
A Closer Look at Drawbacks of Minimizing Weighted Sums of Objectives for Pareto Set Generation in Multicriteria Optimization Problems
,”
Struct. Optim.
,
14
(
1
), pp.
63
69
.
35.
Kelley
,
N.
, and
Jonkman
,
B.
, “
TurbSim: A Stochastic, Full-Field, Turbulence Simulator Primarily for Use With InflowWind/AeroDyn-Based Simulation Tools
,” National Renewable Energy Laboratory, Golden, CO, accessed Dec. 30, 2015, https://nwtc.nrel.gov/TurbSim
36.
Hayman
,
G.
,
2015
, “
MLife: A matlab-Based Estimator of Fatigue Life
,” National Renewable Energy Laboratory, Golden, CO, accessed Dec. 30, 2015, https://nwtc.nrel.gov/MLife
37.
Audet
,
C.
, and
Dennis
,
J. E.
,
2003
, “
Analysis of Generalized Pattern Searches
,”
SIAM J. Optim.
,
13
(
3
), pp.
889
903
.
38.
Mathworks
,
2015
, “
matlab Documentation
,” The Mathworks Inc., Natick, MA, accessed Dec. 30, 2015, http://www.mathworks.co.uk/help/matlab/
39.
Barthelmie
,
R.
,
Sempreviva
,
A.
, and
Pryor
,
S.
,
2010
, “
The Influence of Humidity Fluxes on Offshore Wind Speed Profiles
,”
Ann. Geophys.
,
28
(
5
), pp.
1043
1052
.
You do not currently have access to this content.