While the water vapor content of the combustion gas in natural gas-fired land-based turbines is ∼10%, it can be 20–85% with coal-derived (syngas or H2) fuels or innovative turbine concepts for more efficient carbon capture. Additional concepts envisage working fluids with high CO2 contents to facilitate carbon capture and sequestration. To investigate the effects of changes in the gas composition on thermal barrier coating (TBC) lifetime, furnace cycling tests (1-h and 100-h cycles) were performed in air with 10, 50, and 90 vol. % water vapor and CO2-10% H2O and compared to prior results in dry air or O2. Two types of TBCs were investigated: (1) diffusion bond coatings (Pt-diffusion or Pt-modified aluminide) with commercial electron-beam physical vapor-deposited yttria-stabilized zirconia (YSZ) top coatings on second-generation superalloy N5 and N515 substrates and (2) high-velocity oxygen fuel (HVOF) sprayed MCrAlYHfSi bond coatings with air plasma-sprayed YSZ top coatings on superalloys X4, 1483, or 247 substrates. For both types of coatings exposed in 1-h cycles, the addition of water vapor resulted in a decrease in coating lifetime, except for Pt-diffusion coatings which were unaffected by the environment. In 100-h cycles, environment was less critical, perhaps because coating failure was chemical (i.e., due to interdiffusion) rather than mechanical. In both 1-h and 100-h cycles, CO2 did not appear to have any negative effect on coating lifetime.

References

1.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.
2.
Ruth
,
L. A.
,
2003
, “
Advanced Clean Coal Technology in the USA
,”
Mater. High Temp.
,
20
(
1
), pp.
7
14
.
3.
Wright
, I
. G.
, and
Gibbons
,
T. B.
,
2007
, “
Recent Developments in Gas Turbine Materials and Technology and Their Implications for Syngas Firing
,”
Int. J. Hydrogen Energy
,
32
(
16
), pp.
3610
3621
.
4.
White
,
B. M.
,
Ames
,
R. W.
, and
Burke
,
P.
,
2013
, “
Conditions in Advanced Turbines for IGCC Power Plants With Carbon Capture
,”
ASME
Paper No. GT2013-94609.
5.
Leyens
,
C.
,
Fritscher
,
K.
,
Gehrling
,
R.
,
Peters
,
M.
, and
Kaysser
,
W. A.
,
1996
, “
Oxide Scale Formation on an MCrAlY Coating in Various H2–H2O Atmospheres
,”
Surf. Coat. Technol.
,
82
, pp.
133
144
.
6.
Jönsson
,
B.
, and
Svedberg
,
C.
,
1997
, “
Limiting Factors for Fe-Cr-Al and NiCr in Controlled Industrial Atmospheres
,”
Mater. Sci. Forum
,
251–254
, pp.
551
558
.
7.
Onal
,
K.
,
Maris-Sida
,
M. C.
,
Meier
,
G. H.
, and
Pettit
,
F. S.
,
2003
, “
Water Vapor Effects on the Cyclic Oxidation Resistance of Alumina-Forming Alloys
,”
Mater. High Temp.
,
20
(
3
), pp.
327
337
.
8.
Opila
,
E. J.
,
2004
, “
Volatility of Common Protective Oxides in High-Temperature Water Vapor: Current Understanding and Unanswered Questions
,”
Mater. Sci. Forum
,
461–464
, pp.
765
774
.
9.
Pint
,
B. A.
,
Haynes
,
J. A.
,
Zhang
,
Y.
,
More
,
K. L.
, and
Wright
,
I. G.
,
2006
, “
The Effect of Water Vapor on the Oxidation Behavior of Ni-Pt-Al Coatings and Alloys
,”
Surf. Coat. Technol.
,
201
(
7
), pp.
3852
3856
.
10.
Smialek
,
J. L.
,
2008
, “
Enigmatic Moisture Effects on Al2O3 Scale and TBC Adhesion
,”
Mater. Sci. Forum
,
595–598
, pp.
191
198
.
11.
Quadakkers
,
W. J.
,
Żurek
,
J.
, and
Hänsel
,
M.
,
2009
, “
Effect of Water Vapor on High Temperature Oxidation of FeCr Alloys
,”
JOM
,
61
(
7
), pp.
44
50
.
12.
Déneux
,
V.
,
Cadoret
,
Y.
,
Hervier
,
S.
, and
Monceau
,
D.
,
2010
, “
Effect of Water Vapor on the Spallation of Thermal Barrier Coating Systems During Laboratory Cyclic Oxidation Testing
,”
Oxid. Met.
,
73
, pp.
83
93
.
13.
Pint
,
B. A.
, and
Zhang
,
Y.
,
2011
, “
Performance of Al-Rich Oxidation Resistant Coatings for Fe-Base Alloys
,”
Mater. Corros.
,
62
(
6
), pp.
549
560
.
14.
Pint
,
B. A.
,
Brady
,
M. P.
,
Yamamoto
,
Y.
,
Santella
,
M. L.
,
Maziasz
,
P. J.
, and
Matthews
,
W. J.
,
2011
, “
Evaluation of Alumina-Forming Austenitic Foil for Advanced Recuperators
,”
ASME J. Eng. Gas Turbines Power
,
133
(
10
), p.
102302
.
15.
Pint
,
B. A.
,
Garner
,
G. W.
,
Lowe
,
T. M.
,
Haynes
,
J. A.
, and
Zhang
,
Y.
,
2011
, “
Effect of Increased Water Vapor Levels on TBC Lifetime With Pt-Containing Bond Coatings
,”
Surf. Coat. Technol.
,
206
(
7
), pp.
1566
1570
.
16.
Unocic
,
K. A.
, and
Pint
,
B. A.
,
2013
, “
Effect of Water Vapor on Thermally Grown Alumina Scales on Bond Coatings
,”
Surf. Coat. Technol.
,
215
, pp.
30
38
.
17.
Haynes
,
J. A.
,
Unocic
,
K. A.
, and
Pint
,
B. A.
,
2013
, “
Effect of Water Vapor on the 1100 °C Oxidation Behavior of Plasma-Sprayed TBCs With HVOF NiCoCrAlX Bond Coats
,”
Surf. Coat. Technol.
,
215
, pp.
39
45
.
18.
Bouhanek
,
K.
,
Adesanya
,
O. A.
,
Stott
,
F. H.
,
Skeldon
,
P.
,
Lees
,
D. G.
, and
Wood
,
G. C.
,
2001
, “
High Temperature Oxidation of Thermal Barrier Coating Systems on RR3000 Substrates: Pt Aluminide Bond Coats
,”
Mater. Sci. Forum
,
369–372
, pp.
615
622
.
19.
Zhang
,
Y.
,
Haynes
,
J. A.
,
Pint
,
B. A.
, and
Wright
,
I. G.
,
2005
, “
A Platinum-Enriched γ + γ′ Two-Phase Bond Coat on Ni-Base Superalloys
,”
Surf. Coat. Technol.
,
200
, pp.
1259
1263
.
20.
Gleeson
,
B.
,
2006
, “
Thermal Barrier Coatings for Aeroengine Applications
,”
J. Propul. Power
,
22
(
2
), pp.
375
383
.
21.
Haynes
,
J. A.
,
Pint
,
B. A.
,
Zhang
,
Y.
, and
Wright
,
I. G.
,
2007
, “
Comparison of the Cyclic Oxidation Behavior of β-NiAl, β-NiPtAl and γ + γ′ NiPtAl Coatings on Various Superalloys
,”
Surf. Coat. Technol.
,
202
, pp.
730
734
.
22.
Pint
,
B. A.
,
Haynes
,
J. A.
, and
Zhang
,
Y.
,
2010
, “
Effect of Superalloy Substrate and Bond Coating on TBC Lifetime
,”
Surf. Coat. Technol.
,
205
(
5
), pp.
1236
1240
.
23.
Itoh
,
Y.
,
Saitoh
,
M.
, and
Tamura
,
M.
,
2000
, “
Characteristics of MCrAlY Coatings Sprayed by High Velocity Oxygen-Fuel Spraying System
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
43
49
.
24.
Nicholls
,
J. R.
,
2003
, “
Advances in Coating Design for High-Performance Gas Turbines
,”
MRS Bull.
,
28
(
9
), pp.
659
670
.
25.
Fink
,
P. J.
,
Miller
,
J. L.
, and
Konitzer
,
D. G.
,
2010
, “
Rhenium Reduction—Alloy Design Using an Economically Strategic Element
,”
JOM
,
62
(
1
), pp.
55
57
.
26.
Shah
,
D. M.
, and
Cetel
,
A.
,
2000
, “
Evaluation of PWA1483 for Large Single Crystal IGT Blade Applications
,”
9th International Symposium on Superalloys
(
Superalloys 2000
),
T. M.
Pollack
,
R. D.
Kissinger
,
R. R.
Bowman
,
K. A.
Green
,
M.
McLean
,
S. L.
Olson
, and
J. J.
Schirra
, eds.,
Seven Springs
,
PA
, Sept. 17–21, TMS, Warrendale, PA, pp.
295
304
.
27.
Lee
,
W. Y.
,
Zhang
,
Y.
,
Wright
, I
. G.
,
Pint
,
B. A.
, and
Liaw
,
P. K.
,
1998
, “
Effects of Sulfur Impurity on the Scale Adhesion Behavior of a Desulfurized Ni-Based Superalloy Aluminized by Chemical Vapor Deposition
,”
Metall. Mater. Trans. A
,
29
(
3
), pp.
833
841
.
28.
DeMasi-Marcin
,
J. T.
, and
Gupta
,
D. K.
,
1994
, “
Protective Coatings in the Gas Turbine Engine
,”
Surf. Coat. Technol.
,
68–69
, pp.
1
9
.
29.
Unocic
,
K. A.
, and
Pint
,
B. A.
,
2010
, “
Characterization of the Alumina Scale Formed on a Commercial MCrAlYHfSi Coating
,”
Surf. Coat. Technol.
,
205
(
5
), pp.
1178
1182
.
30.
Pint
,
B. A.
,
2013
, “
High-Temperature Corrosion in Fossil Fuel Power Generation: Present and Future
,”
JOM
,
65
(
8
), pp.
1024
1032
.
31.
Pint
,
B. A.
, and
Haynes
,
J. A.
,
2013
, “
The Effect of Water Vapor Content on TBC Lifetime
,”
Mater. Sci. Technol.
,
29
(
7
), pp.
828
834
.
32.
Tawancy
,
H. M.
,
Mohamed
,
A. I.
,
Abbas
,
N. M.
,
Jones
,
R. E.
, and
Rickerby
,
D. S.
,
2003
, “
Effect of Superalloy Substrate Composition on the Performance of a Thermal Barrier Coating System
,”
J. Mater. Sci.
,
38
(
18
), pp.
3797
3807
.
33.
Wu
,
R. T.
,
Kawagishi
,
K.
,
Harada
,
H.
, and
Reed
,
R. C.
,
2008
, “
The Retention of Thermal Barrier Coating Systems on Single-Crystal Superalloys: Effects of Substrate Composition
,”
Acta Mater.
,
56
(
14
), pp.
3622
3639
.
34.
Lance
,
M. J.
,
Unocic
,
K. A.
,
Haynes
,
J. A.
, and
Pint
,
B. A.
,
2013
, “
Effect of Water Vapor on Thermally Grown Alumina Scales on Simple and Pt-Modified Aluminide Coatings
,”
Surf. Coat. Technol.
,
237
, pp.
2
7
.
35.
Ramanarayanan
,
T. A.
,
Raghavan
,
M.
, and
Petkovic-Luton
,
R.
,
1983
, “
Al2O3 Scales on ODS Alloys
,”
JIMIS-3, High Temperature Corrosion Transactions Supplement
, Japan Institute of Metals, Tokyo, Japan, Vol.
24
, pp.
199
206
.
36.
Pint
,
B. A.
,
Terrani
,
K. A.
,
Brady
,
M. P.
,
Cheng
,
T.
, and
Keiser
,
J. R.
,
2013
, “
High Temperature Oxidation of Fuel Cladding Candidate Materials in Steam-Hydrogen Environments
,”
J. Nucl. Mater.
,
440
, pp.
420
427
.
37.
N'Gandu Muamba
,
J. M.
,
Streiff
,
R.
, and
Boone
,
D. H.
,
1987
, “
L'Influence du Hafnium du Substrat sur la Résistance à l'Oxydation des Revêtements d'Aluminiures sur les Superalliages Base Nickel
,”
Mater. Sci. Eng.
,
88
, pp.
111
121
.
38.
Pint
,
B. A.
,
Wright
, I
. G.
,
Lee
,
W. Y.
,
Zhang
,
Y.
,
Prüßner
,
K.
, and
Alexander
,
K. B.
,
1998
, “
Substrate and Bond Coat Compositions: Factors Affecting Alumina Scale Adhesion
,”
Mater. Sci. Eng.: A
,
245
(
2
), pp.
201
211
.
39.
Tolpygo
, V
. K.
,
Murphy
,
K. S.
, and
Clarke
,
D. R.
,
2008
, “
Effect of Hf, Y and C in the Underlying Superalloy on the Rumpling of Diffusion Aluminide Coatings
,”
Acta Mater.
,
56
(
3
), pp.
489
499
.
40.
Veal
,
B. W.
,
Paulikas
,
A. P.
,
Gleeson
,
B.
, and
Hou
,
P. Y.
,
2007
, “
Creep in α-Al2O3 Thermally Grown on β-NiAl and NiAlPt Alloys
,”
Surf. Coat. Technol.
,
202
, pp.
608
612
.
41.
Izumi
,
T.
, and
Gleeson
,
B.
,
2005
, “
Oxidation Behavior of Pt+Hf-Modified γ-Ni +γ-Ni3Al Alloys
,”
Mater. Sci. Forum
,
522–523
, pp.
221
228
.
42.
Haynes
,
J. A.
,
Pint
,
B. A.
,
Zhang
,
Y.
, and
Wright
, I
. G.
,
2008
, “
The Effect of Pt Content on γ + γ′ Diffusion Coatings
,”
Surf. Coat. Technol.
,
203
, pp.
413
416
.
43.
Pint
,
B. A.
,
Unocic
,
K. A.
, and
Haynes
,
J. A.
,
2014
, “
The Effect of Water Vapor Content and CO2 on TBC Lifetime
,”
7th International Conference on Advances in Materials Technology for Fossil Power Plants
, Waikoloa, HI, Oct. 22–25, ASM International, Materials Park, OH, pp.
360
370
.
44.
Deb
,
P.
,
Boone
,
D. H.
, and
Manley
,
T. F.
,
1987
, “
Surface Instability of Platinum Modified Aluminide Coatings During 1100 °C Cyclic Testing
,”
J. Vac. Sci. Technol., A
,
5
(
6
), pp.
3366
3372
.
45.
Tolpygo
,
V. K.
, and
Clarke
,
D. R.
,
2009
, “
Rumpling of CVD (Ni,Pt)Al Diffusion Coatings Under Intermediate Temperature Cycling
,”
Surf. Coat. Technol.
,
203
, pp.
3278
3285
.
46.
Evans
,
H. E.
,
2011
, “
Oxidation Failure of TBC Systems: An Assessment of Mechanisms
,”
Surf. Coat. Technol.
,
206
(
7
), pp.
1512
1521
.
47.
Haynes
,
J. A.
,
Pint
,
B. A.
,
Porter
,
W. D.
, and
Wright
,
I. G.
,
2004
, “
Comparison of Thermal Expansion and Oxidation Behavior of Various High-Temperature Coating Materials and Superalloys
,”
Mater. High Temp.
,
21
(
2
), pp.
87
94
.
48.
Lance
,
M. J.
,
Unocic
,
K. A.
,
Haynes
,
J. A.
, and
Pint
,
B. A.
, “
APS TBC Performance on Directionally-Solidified Superalloy Substrates With HVOF NiCoCrAlYHfSi Bond Coatings
,”
Surf. Coat. Technol.
,
284
, pp.
9
13
.
49.
Unocic
,
K. A.
, and
Pint
,
B. A.
,
2013
, “
Oxidation Behavior of Co-Doped NiCrAl Alloys in Dry and Wet Air
,”
Surf. Coat. Technol.
,
237
, pp.
8
15
.
50.
Viswanathan
,
V.
,
Dwivedi
,
G.
, and
Sampath
,
S.
,
2014
, “
Engineered Multilayer Thermal Barrier Coatings for Enhanced Durability and Functional Performance
,”
J. Am. Ceram. Soc.
,
97
(
9
), pp.
2770
2778
.
51.
Echsler
,
H.
,
Renusch
,
D.
, and
Schütze
,
M.
,
2004
, “
Bond Coat Oxidation and Its Significance for Life Expectancy of Thermal Barrier Coating Systems
,”
Mater. Sci. Technol.
,
20
(
3
), pp.
307
318
.
52.
Renusch
,
D.
,
Schorr
,
M.
, and
Schütze
,
M.
,
2008
, “
The Role That Bond Coat Depletion of Aluminum Has on the Lifetime of APS-TBC Under Oxidizing Conditions
,”
Mater. Corros.
,
59
(
7
), pp.
547
555
.
53.
Lance
,
M. J.
,
Unocic
,
K. A.
,
Haynes
,
J. A.
, and
Pint
,
B. A.
,
2014
, “
The Effect of Cycle Frequency, H2O and CO2 on TBC Lifetime With NiCoCrAlYHfSi Bond Coatings
,”
Surf. Coat. Technol.
,
260
, pp.
107
112
.
54.
Young
,
D. J.
,
Naumenko
,
D.
,
Niewolak
,
L.
,
Wessel
,
E.
,
Singheiser
,
L.
, and
Quadakkers
,
W. J.
,
2010
, “
Oxidation Kinetics of Y-Doped FeCrAl-Alloys in Low and High pO2 Gases
,”
Mater. Corros.
,
61
(
10
), pp.
838
844
.
55.
Unocic
,
K. A.
,
Essuman
,
E. K.
,
Dryepondt
,
S.
, and
Pint
,
B. A.
,
2012
, “
Effect of Environment on the Scale Formed on ODS FeCrAl at 1100 °C
,”
Mater. High Temp.
,
29
(
3
), pp.
171
180
.
56.
Pint
,
B. A.
,
Dryepondt
,
S.
,
Rouaix-Vande Put
,
A.
, and
Zhang
,
Y.
,
2012
, “
Mechanistic-Based Lifetime Predictions for High Temperature Alloys and Coatings
,”
JOM
,
64
(
12
), pp.
1454
1460
.
57.
Dryepondt
,
S.
,
Rouaix-Vande Put
,
A.
, and
Pint
,
B. A.
,
2013
, “
Effect of H2O and CO2 on the Oxidation Behavior and Durability at High Temperature of ODS-FeCrAl
,”
Oxid. Met.
,
79
, pp.
627
638
.
You do not currently have access to this content.