Lean premixed single-stage combustion is state of the art for low pollution combustion in heavy-duty gas turbines with gaseous fuels. The application of premixed jets in multistage combustion to lower nitric oxide emissions and enhance turn-down ratio is a novel promising approach. At the Lehrstuhl für Thermodynamik, Technische Universität München, a large-scale atmospheric combustion test rig has been set up for studying staged combustion. The understanding of lift-off (LO) behavior is crucial for determining the amount of mixing before ignition and for avoiding flames anchoring at the combustor walls. This experiment studies jet LO depending on jet equivalence ratio (0.58–0.82), jet preheat temperature (288–673 K), cross flow temperature (1634–1821 K), and jet momentum ratio (6–210). The differences to existing LO studies are the high cross flow temperature and applying a premixed jet. The LO height of the jet flame is determined by OH* chemiluminescence images, and subsequently, the data is used to analyze the influence of each parameter and to develop a model that predicts the LO height for similar staged combustion systems. A main outcome of this work is that the LO height in a high temperature cross flow cannot be described by one dimensionless number like Damköhler- or Karlovitz-number. Furthermore, the ignition delay time scale τign also misses part of the LO height mechanism. The presented model uses turbulent time scales, the ignition delay, and a chemical time scale based on the laminar flame speed. An analysis of the model reveals flame stabilization mechanisms and explains the importance of different time scale.
Skip Nav Destination
Article navigation
August 2016
Research-Article
A Model for Predicting the Lift-Off Height of Premixed Jets in Vitiated Cross Flow
Michael Kolb,
Michael Kolb
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: kolb@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: kolb@td.mw.tum.de
Search for other works by this author on:
Denise Ahrens,
Denise Ahrens
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Technische Universität München,
Garching 85748, Germany
Search for other works by this author on:
Christoph Hirsch,
Christoph Hirsch
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Technische Universität München,
Garching 85748, Germany
Search for other works by this author on:
Thomas Sattelmayer
Thomas Sattelmayer
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Technische Universität München,
Garching 85748, Germany
Search for other works by this author on:
Michael Kolb
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: kolb@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: kolb@td.mw.tum.de
Denise Ahrens
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Technische Universität München,
Garching 85748, Germany
Christoph Hirsch
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Technische Universität München,
Garching 85748, Germany
Thomas Sattelmayer
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Technische Universität München,
Garching 85748, Germany
Contributed by the Heat Transfer Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received December 5, 2015; final manuscript received December 11, 2015; published online March 1, 2016. Editor: David Wisler.
J. Eng. Gas Turbines Power. Aug 2016, 138(8): 081901 (9 pages)
Published Online: March 1, 2016
Article history
Received:
December 5, 2015
Revised:
December 11, 2015
Citation
Kolb, M., Ahrens, D., Hirsch, C., and Sattelmayer, T. (March 1, 2016). "A Model for Predicting the Lift-Off Height of Premixed Jets in Vitiated Cross Flow." ASME. J. Eng. Gas Turbines Power. August 2016; 138(8): 081901. https://doi.org/10.1115/1.4032421
Download citation file:
Get Email Alerts
CFD Modeling of Additively Manufactured Extreme Environment Heat Exchangers for Waste Heat Recuperation
J. Eng. Gas Turbines Power
Thickened Flame Model Extension for Dual Gas GT Combustion: Validation Against Single Cup Atmospheric Test
J. Eng. Gas Turbines Power
Development of A Method for Shape Optimization for A Gas Turbine Fuel Injector Design Using Metal-AM
J. Eng. Gas Turbines Power
Related Articles
Sensitivity Analysis of Auto-Ignition Simulation at Gas Turbine Operating Conditions
J. Eng. Gas Turbines Power (October,2015)
Experimental and Numerical Investigation of Fuel–Air Mixing in a Radial Swirler Slot of a Dry Low Emission Gas Turbine Combustor
J. Eng. Gas Turbines Power (June,2016)
Autoignition of Hydrogen and Air Inside a Continuous Flow Reactor With Application to Lean Premixed Combustion
J. Eng. Gas Turbines Power (September,2008)
Experimental Study of Aeronautical Ignition in a Swirled Confined Jet-Spray Burner
J. Eng. Gas Turbines Power (February,2018)
Related Chapters
The Identification of the Flame Combustion Stability by Combining Principal Component Analysis and BP Neural Network Techniques
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)
Numerical Modeling of N O x Emission in Turbulant Spray Flames Using Thermal and Fuel Models
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Effect of Fuel Properties on Ignition and Combustion Limits in Gas Turbine Combustors
Stationary Gas Turbine Alternative Fuels