Most annular combustors feature a discrete rotational symmetry so that the full configuration can be obtained by copying one burner-flame segment a certain number of times around the circumference. A thermoacoustic model based on the Helmholtz equation then admits special solutions of the so-called Bloch type that can be obtained by considering one segment only. We show that a significant reduction in computational effort for the determination of thermoacoustic modes can be achieved by exploiting this concept. The framework is applicable even in complex cases including an inhomogeneous temperature field and a frequency-dependent, spatially distributed flame response. A parametric study on a three-dimensional combustion chamber model is conducted using both the full-scale chamber simulation and a one-segment model with the appropriate Bloch-type boundary conditions. The results for both computations are compared in terms of mode frequencies and growth rates as well as the corresponding mode shapes. The same is done for a more complex industrial configuration. These comparisons demonstrate the benefits of the Bloch-wave based analysis.

References

1.
Lieuwen
,
T. C.
, and
Yang
,
V.
, eds.,
2005
, Combustion Instabilities in Gas Turbine Engines (Progress in Astronautics and Aeronautics), Vol.
210
,
AIAA, Inc.
, Reston, VA.
2.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and V-Flame Dynamics
,”
Combust. Flame
,
134
(
1–2
), pp.
21
34
.
3.
Lieuwen
,
T.
,
2003
, “
Modeling Premixed Combustion–Acoustic Wave Interactions: A Review
,”
J. Propul. Power
,
19
(
5
), pp.
765
781
.
4.
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Self-Excited Azimuthal Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2909
2916
.
5.
Wolf
,
P.
,
Balakrishnan
,
R.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
,
2012
, “
Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers
,”
Flow, Turbul. Combust.
,
88
, pp.
191
206
.
6.
Poinsot
,
T.
,
2013
, “
Simulation Methodologies and Open Questions for Acoustic Combustion Instability Studies
,”
Annual Research Briefs
,
Center for Turbulence Research, Standford University
, Stanford, CA, pp.
179
188
.
7.
Evesque
,
S.
, and
Polifke
,
W.
,
2002
, “
Low-Order Acoustic Modelling for Annular Combustors: Validation and Inclusion of Modal Coupling
,”
ASME
Paper No. GT-2002-30064.
8.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C. O.
,
2003
, “
Thermoacoustic Modeling and Control of Multi Burner Combustion Systems
,”
ASME
Paper No. 2003-GT-38688.
9.
Sattelmayer
,
T.
, and
Polifke
,
W.
,
2003
, “
Assessment of Methods for the Computation of the Linear Stability of Combustors
,”
Combust. Sci. Technol.
,
175
(
3
), pp.
453
476
.
10.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.
11.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Campa
,
G.
,
2011
, “
A Finite Element Method for Three-Dimensional Analysis of Thermo-Acoustic Combustion Instability
,”
ASME J. Eng. Gas Turbines Power
,
133
(1), p.
015506
.
12.
Motheau
,
E.
,
Selle
,
L.
, and
Nicoud
,
F.
,
2014
, “
Accounting for Convective Effects in Zero-Mach-Number Thermoacoustic Models
,”
J. Sound Vib.
,
333
(
1
), pp.
246
262
.
13.
Bloch
,
F.
,
1929
, “
Über die Quantenmechanik der Elektronen in Kristallgittern
,”
Z. Phys.
,
52
, pp.
555
560
.
14.
Elachi
,
C.
,
1976
, “
Waves in Active and Passive Periodic Structures: A Review
,”
Proc. IEEE
,
64
(
12
), pp.
1666
1698
.
15.
Adams
,
S. D. M.
,
Craster
,
R. V.
, and
Guenneau
,
S.
,
2008
, “
Bloch Waves in Periodic Multi-Layered Acoustic Waveguides
,”
Proc. R. Soc. A
,
464
(
2098
), pp.
2669
2692
.
16.
Manktelow
,
K.
,
Narisetti
,
R. K.
,
Leamy
,
M. J.
, and
Massimo
,
R.
,
2012
, “
Finite-Element Based Perturbation Analysis of Wave Propagation in Nonlinear Periodic Structures
,”
Mech. Syst. Signal Process.
,
39
(1–2), pp.
32
46
.
17.
Casadei
,
F.
, and
Bertoldi
,
K.
,
2014
, “
Wave Propagation in Beams With Periodic Arrays of Airfoil-Shaped Resonating Units
,”
J. Sound Vib.
,
333
(
24
), pp.
6532
6547
.
18.
Walz
,
G.
,
Krebs
,
W.
,
Hoffmann
,
S.
, and
Judith
,
H.
,
2002
, “
Detailed Analysis of the Acoustic Mode Shapes of an Annular Combustion Chamber
,”
ASME J. Eng. Gas Turbines Power
,
124
(
1
), pp.
3
9
.
19.
Campa
,
G.
, and
Camporeale
,
S. M.
,
2014
, “
Prediction of the Thermoacoustic Combustion Instabilities in Practical Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091504
.
20.
Sukumar
,
N.
, and
Pask
,
J. E.
,
2009
, “
Classical and Enriched Finite Element Formulations for Bloch-Periodic Boundary Conditions
,”
Int. J. Numer. Methods Eng.
,
77
(
8
), pp.
1121
1138
.
21.
Schuermans
,
B.
,
Bellucci
,
V.
,
Guethe
,
F.
,
Meili
,
F.
, and
Paschereit
,
C. O.
,
2004
, “
A Detailed Analysis of Thermoacoustic Interaction Mechanism in a Turbulent Premixed Flame
,”
ASME
Paper No. GT2004-53831.
22.
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2014
, “
Flame Dynamics and Unsteady Heat Release Rate of Self-Excited Azimuthal Modes in an Annular Combustor
,”
Combust. Flame
,
161
(
10
), pp.
2565
2578
.
You do not currently have access to this content.