Diesel engines are widely used due to their high reliability, high thermal efficiency, fuel availability, and low consumption. They are used to generate power, e.g., in passenger cars, ships, power plants, marine offshore platforms, and mining and construction machines. The engine is at heart of these applications, so keeping it in good working condition is vital. Recent technical and computational advances and environmental legislation have stimulated the development of more efficient and robust techniques for the diagnostics of diesel engines. The emphasis is on the diagnostics of faults under development and the causes of engine failure or reduced efficiency. Diesel engine fuel injection plays an important role in the development of the combustion in the engine cylinder. Arguably, the most influential component of the diesel engine is the fuel injection equipment; even minor faults can cause a major loss of efficiency of the combustion and an increase in engine emissions and noise. With increased sophistication (e.g., higher injection pressures) being required to meet continuously improving noise, exhaust smoke, and gaseous emission regulations, fuel injection equipment is becoming even more susceptible to failure. The injection systems have been shown to be the largest contributing factor in diesel engine failures. Extracting the health information of components in the fuel injection system is a very demanding task. Besides the very time-consuming nature of experimental investigations, direct measurements are also limited to selected observation points. Diesel engine faults normally do not occur in a short timeframe. The modeling of typical engine faults, particularly combustion related faults, in a controlled manner is thus vital for the development of diesel engine diagnostics and fault detection. Simulation models based on physical grounds can enlarge the number of studied variables and also obtain a better understanding of localized phenomena that affect the overall behavior of the system. This paper presents a survey of the analysis, modeling, and diagnostics of diesel fuel injection systems. Typical diesel fuel injection systems and their common faults are presented. The most relevant state of the art research articles on analysis and modeling of fluid injection systems as well as diagnostics techniques and measured signals describing the behavior of the system are reviewed and the results and findings are discussed. The increasing demand and effect of legislation related to diagnostics, especially on-board diagnostics (OBD), are discussed with reference to the future progress of this field.
Skip Nav Destination
Article navigation
August 2016
Research-Article
A Survey of Analysis, Modeling, and Diagnostics of Diesel Fuel Injection Systems
Tomi R. Krogerus,
Tomi R. Krogerus
Department of Intelligent Hydraulics and Automation,
Tampere University of Technology,
P.O. Box 589,
Tampere 33101, Finland
e-mail: tomi.krogerus@tut.fi
Tampere University of Technology,
P.O. Box 589,
Tampere 33101, Finland
e-mail: tomi.krogerus@tut.fi
Search for other works by this author on:
Mika P. Hyvönen,
Mika P. Hyvönen
Department of Intelligent Hydraulics and Automation,
Tampere University of Technology,
P.O. Box 589,
Tampere 33101, Finland
e-mail: mika.hyvonen@tut.fi
Tampere University of Technology,
P.O. Box 589,
Tampere 33101, Finland
e-mail: mika.hyvonen@tut.fi
Search for other works by this author on:
Kalevi J. Huhtala
Kalevi J. Huhtala
Department of Intelligent Hydraulics and Automation,
Tampere University of Technology,
P.O. Box 589,
Tampere 33101, Finland
e-mail: kalevi.huhtala@tut.fi
Tampere University of Technology,
P.O. Box 589,
Tampere 33101, Finland
e-mail: kalevi.huhtala@tut.fi
Search for other works by this author on:
Tomi R. Krogerus
Department of Intelligent Hydraulics and Automation,
Tampere University of Technology,
P.O. Box 589,
Tampere 33101, Finland
e-mail: tomi.krogerus@tut.fi
Tampere University of Technology,
P.O. Box 589,
Tampere 33101, Finland
e-mail: tomi.krogerus@tut.fi
Mika P. Hyvönen
Department of Intelligent Hydraulics and Automation,
Tampere University of Technology,
P.O. Box 589,
Tampere 33101, Finland
e-mail: mika.hyvonen@tut.fi
Tampere University of Technology,
P.O. Box 589,
Tampere 33101, Finland
e-mail: mika.hyvonen@tut.fi
Kalevi J. Huhtala
Department of Intelligent Hydraulics and Automation,
Tampere University of Technology,
P.O. Box 589,
Tampere 33101, Finland
e-mail: kalevi.huhtala@tut.fi
Tampere University of Technology,
P.O. Box 589,
Tampere 33101, Finland
e-mail: kalevi.huhtala@tut.fi
1Corresponding author.
Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received September 21, 2015; final manuscript received December 17, 2015; published online February 23, 2016. Assoc. Editor: Timothy J. Jacobs.
J. Eng. Gas Turbines Power. Aug 2016, 138(8): 081501 (11 pages)
Published Online: February 23, 2016
Article history
Received:
September 21, 2015
Revised:
December 17, 2015
Citation
Krogerus, T. R., Hyvönen, M. P., and Huhtala, K. J. (February 23, 2016). "A Survey of Analysis, Modeling, and Diagnostics of Diesel Fuel Injection Systems." ASME. J. Eng. Gas Turbines Power. August 2016; 138(8): 081501. https://doi.org/10.1115/1.4032417
Download citation file:
Get Email Alerts
CFD Modeling of Additively Manufactured Extreme Environment Heat Exchangers for Waste Heat Recuperation
J. Eng. Gas Turbines Power
Thickened Flame Model Extension for Dual Gas GT Combustion: Validation Against Single Cup Atmospheric Test
J. Eng. Gas Turbines Power
Development of A Method for Shape Optimization for A Gas Turbine Fuel Injector Design Using Metal-AM
J. Eng. Gas Turbines Power
Related Articles
Cylinder Pressure Information-Based Postinjection Timing Control for Aftertreatment System Regeneration in a Diesel Engine—Part II: Active Diesel Particulate Filter Regeneration
J. Eng. Gas Turbines Power (August,2016)
Performance and Combustion Characteristics of OM314 Diesel Engine Fueled With DME: A Theoretical and Experimental Analysis
J. Eng. Gas Turbines Power (September,2010)
Optical Diagnostics of Late-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine
J. Eng. Gas Turbines Power (May,2008)
Effects of Amorphous Ti–Al–B Nanopowder Additives on Combustion in a Single-Cylinder Diesel Engine
J. Eng. Gas Turbines Power (September,2017)
Related Proceedings Papers
Related Chapters
Determination of the Effects of Safflower Biodiesel and Its Blends with Diesel Fuel on Engine Performance and Emissions in a Single Cylinder Diesel Engine
International Conference on Software Technology and Engineering, 3rd (ICSTE 2011)
Physiology of Human Power Generation
Design of Human Powered Vehicles
Cavitation in Engine Lubricants: Visualisation Experiments in both a Single Ring Test Rig and a Single Cylinder Motored Diesel Engine to Complement on the Theoretical Modeling of Cavitation
Proceedings of the 10th International Symposium on Cavitation (CAV2018)