The aerodynamic performance of the bypass exhaust system is key to the success of future civil turbofan engines. This is due to current design trends in civil aviation dictating continuous improvement in propulsive efficiency by reducing specific thrust and increasing bypass ratio (BPR). This paper aims to develop an integrated framework targeting the automatic design optimization of separate-jet exhaust systems for future aero-engine architectures. The core method of the proposed approach is based on a standalone exhaust design tool comprising modules for cycle analysis, geometry parameterization, mesh generation, and Reynolds-averaged Navier–Stokes (RANS) flow solution. A comprehensive optimization strategy has been structured comprising design space exploration (DSE), response surface modeling (RSM) algorithms, as well as state-of-the-art global/genetic optimization methods. The overall framework has been deployed to optimize the aerodynamic design of two civil aero-engines with separate-jet exhausts, representative of current and future engine architectures, respectively. A set of optimum exhaust designs have been obtained for each investigated engine and subsequently compared against their reciprocal baselines established using the current industry practice in terms of exhaust design. The obtained results indicate that the optimization could lead to designs with significant increase in net propulsive force, compared to their respective notional baselines. It is shown that the developed approach is implicitly able to identify and mitigate undesirable flow-features that may compromise the aerodynamic performance of the exhaust system. The proposed method enables the aerodynamic design of optimum separate-jet exhaust systems for a user-specified engine cycle, using only a limited set of standard nozzle design variables. Furthermore, it enables to quantify, correlate, and understand the aerodynamic behavior of any separate-jet exhaust system for any specified engine architecture. Hence, the overall framework constitutes an enabling technology toward the design of optimally configured exhaust systems, consequently leading to increased overall engine thrust and reduced specific fuel consumption (SFC).

References

1.
Clarke
,
J.-P.
,
2003
, “
The Role of Advanced Air Traffic Management in Reducing the Impact of Aircraft Noise and Enabling Aviation Growth
,”
J. Air Transp. Manage.
,
9
(
5
), pp.
161
165
.
2.
Epstein
,
A. H.
,
2014
, “
Aeropropulsion for Commercial Aviation in the Twenty-First Century and Research Directions Needed
,”
AIAA J.
,
52
(
5
), pp.
901
911
.
3.
Walsh
,
P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance Engineering
,
Blackwell Publishing
, Oxford, UK.
4.
Kyprianidis
,
K. G.
,
Grnstedt
,
T.
,
Ogaji
,
S. O. T.
,
Pilidis
,
P.
, and
Singh
,
R.
,
2010
, “
Assessment of Future Aero-Engine Designs With Intercooled and Intercooled Recuperated Cores
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
011701
.
5.
Kyprianidis
,
K. G.
,
Rolt
,
A. M.
, and
Grnstedt
,
T.
,
2013
, “
Multidisciplinary Analysis of a Geared Fan Intercooled Core Aero-Engine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011203
.
6.
Kyprianidis
,
K. G.
, and
Rolt
,
A. M.
,
2014
, “
On the Optimization of a Geared Fan Intercooled Core Engine Design
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
041201
.
7.
Guha
,
A.
,
2001
, “
Optimum Fan Pressure Ratio for Bypass Engines With Separate or Mixed Exhaust Streams
,”
J. Propul. Power
,
17
(
5
), pp.
1117
1122
.
8.
Mida
,
S. G.
,
1979
,
Guide to In-Flight Thrust Measurement of Turbojets and Fan Engines
,
Advisory Group for Aerospace Research and Development
,
Neuilly sur Seine, France
.
9.
AGARD
,
1981
,
Aerodynamics of Power Plan Installation
,
Advisory Group for Aerospace Research and Development
,
Neuilly sur Seine, France
.
10.
Covert
,
E. E.
,
James
,
C. R.
,
Kimsey
,
W. M.
,
Rickey
,
G. K.
, and
Rooney
,
E.
,
1985
, “
Thrust and Drag: Its Prediction and Verification
,”
Progress in Astronautics and Aeronautics Series
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
11.
Dusa
,
D.
,
Lahti
,
D.
, and
Berry
,
D.
,
1982
, “
Investigation of Subsonic Nacelle Performance Improvement Concept
,”
18th Joint Propulsion Conference
,
Cleveland, OH
, June 21–23,
AIAA
Paper No. 1982-1042.
12.
Malecki
,
R. E.
, and
Lord
,
K.
,
1995
, “
Aerodynamic Performance of Exhaust Nozzles Derived From CFD Simulation
,”
AIAA
Paper No. 1995-2623.
13.
Decher
,
R.
, and
Tegeler
,
D. C.
,
1975
, “
High Accuracy Force Accounting Procedures for Turbo Powered Simulator Testing
,”
AIAA
Paper No. 1975-1324.
14.
Zhang
,
Y.
,
Chen
,
H.
,
Zhang
,
M.
,
Zhang
,
M.
,
Li
,
Z.
, and
Fu
,
S.
,
2015
, “
Performance Prediction of Conical Nozzle Using Navier-Stokes Computation
,”
J. Propul. Power
,
31
(
1
), pp.
192
203
.
15.
Zhang
,
Y.
,
Chen
,
H.
,
Fu
,
S.
,
Zhang
,
M.
, and
Zhang
,
M.
,
2015
, “
Drag Prediction Method of Powered-On Civil Aircraft Based on Thrust-Drag Bookkeeping
,”
Chin. J. Aeronaut.
,
28
(
4
), pp.
1023
1033
.
16.
Heath
,
C. M.
,
Gray
,
J. S.
,
Park
,
M. A.
,
Nielsen
,
E. J.
, and
Carlson
,
J.-R.
,
2015
, “
Aerodynamic Shape Optimization of a Dual-Stream Supersonic Plug Nozzle
,” SciTech 2015, Reston, VA,
AIAA
Report No. 2015-1047.
17.
Nielsen
,
E. J.
, and
Anderson
,
W. K.
,
2002
, “
Recent Improvements in Aerodynamic Design Optimization on Unstructured Meshes
,”
AIAA J.
,
40
(
6
), pp.
1155
1163
.
18.
Nielsen
,
E. J.
, and
Diskins
,
B.
,
2013
, “
Discrete Adjoint-Based Design for Unsteady Turbulent Flows on Dynamic Overset Unstructured Grids
,”
AIAA J.
,
51
(
6
), pp.
1355
1373
.
19.
Schittkowski
,
K.
,
1983
, “
On the Convergence of a Sequential Quadratic Programming Method With an Augmented Lagrangian Search Direction
,”
Optimization
,
14
, pp.
197
216
.
20.
Clemen
,
C.
,
Albrecht
,
P.
, and
Herzog
,
S.
,
2012
, “
Systematic Optimisation of a Turbofan Bypass Duct System
,”
ASME
Paper No. GT2012-68276.
21.
Lapworth
,
B. L.
,
2004
, “
HYDRA-CFD: A Framework for Collaborative CFD Development
,”
International Conference on Scientific and Engineering Computation (IC-SEC)
,
Singapore
, June 30–July 2.
22.
Sobol
,
I. M.
,
1979
, “
On the Systematic Search in a Hypercube
,”
SIAM J. Numer. Anal.
,
16
(
5
), pp. 790–793.
23.
Wright
,
G. B.
,
2003
, “
Radial Basis Function Interpolation: Numerical and Analytical Development
,” Ph.D. thesis, Department of Applied Mathematics, University of Colorado, Denver, CO.
24.
Sasaki
,
D.
,
Obayashi
,
S.
, and
Nakahashi
,
K.
,
2002
, “
Navier-Stokes Optimization of Supersonic Wings With Four Objectives Using Evolutionary Algorithm
,”
J. Aircr.
,
39
(
4
), pp.
621
629
.
25.
Haderlie
,
J.
, and
Crossley
,
W.
,
2010
, “
Multiobjective Optimization of a Supersonic-Inlet Bypass Duct Splitter Via Surrogate Modeling
,”
13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference
,
Fort Worth, TX
, Sept. 13–15,
AIAA
Paper No. 2010-9170.
26.
Kulfan
,
B. M.
, and
Bussoletti
,
J. E.
,
2006
, “
‘Fundamental’ Parametric Geometry Representations for Aircraft Component Shapes
,”
11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Portsmouth, VA
,
AIAA
Paper No. 2006-6948.
27.
Ceze
,
M.
,
Hayashi
,
M.
, and
Volpe
,
E.
,
2009
, “
A Study of the CST Parameterization Characteristics
,”
27th AIAA Applied Aerodynamics Conference
,
San Antonio, TX
, June 22–25, Paper No.
AIAA
2009-3767.
28.
Kulfan
,
B. M.
,
2007
, “
A Universal Parametric Geometry Representation Method CST
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno Hilton, Reno, NV
, Jan. 8–11,
AIAA
Paper No. 2007-0062.
29.
Kulfan
,
B. M.
,
2010
, “
Recent Extensions and Applications of the ‘CST’ Universal Parametric Geometry Representation Method
,”
Aeronaut. J.
,
114
(
1153
), pp.
157
176
.
30.
Forrester
,
A. I. J.
,
Sobester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley
,
Chichester, UK
.
31.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand
,”
J. Chem. Metall. Min. Soc. S. Afr.
,
52
(
6
), pp.
119
139
.
32.
Bayraktar
,
H.
, and
Turalioglu
,
F.
,
2005
, “
A Kriging-Based Approach for Locating a Sampling Site in the Assessment of Air Quality
,”
Stochastic Environ. Res. Risk Assess.
,
19
(
4
), pp.
301
305
.
33.
Qiu
,
S.
,
Song
,
W. B.
, and
Liu
,
H.
,
2014
, “
Shape Optimization of a General Bypass Duct for Tone Noise Reduction Using Continuous Adjoint Method
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
1
), pp.
119
134
.
34.
Wu
,
H. Y.
,
Yang
,
S. C.
, and
Liu
,
F.
,
2003
, “
Comparison of Three Geometric Representations of Airfoils for Aerodynamic Optimisation
,”
16th AIAA Computational Fluid Dynamics Conference
,
Orlando, FL
, June 23–26,
AIAA
Paper No. 2003-4095.
35.
Goulos
,
I.
,
Stankowski
,
T.
,
Otter
,
J.
,
MacManus
,
D.
,
Grech
,
N.
, and
Sheaf
,
C.
,
2015
, “
Aerodynamic Design of Separate-Jet Exhausts for Future Civil Aero-engines—Part I: Parametric Geometry Definition and CFD Approach
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081201
.
36.
Macmillan
,
W. L.
,
1974
, “
Development of a Module Type Computer Program for the Calculation of Gas Turbine off Design Performance
,” Ph.D. thesis, Department of Power and Propulsion, Cranfield University, Bedfordshire, UK.
37.
Kulfan
,
B. M.
,
2008
, “
Universal Parametric Geometry Representation Method
,”
J. Aircr.
,
45
(
1
), pp.
142
158
.
38.
Zhu
,
F.
, and
Qin
,
N.
,
2014
, “
Intuitive Class/Shape Function Parameterization for Airfoils
,”
AIAA J.
,
52
(
1
), pp.
17
25
.
39.
Ansys, 2012, “ANSYS ICEM CFD Tutorial Manual,”
Ansys, Inc.
,
Canonsburg, PA
.
40.
Ansys, 2012, “ANSYS FLUENT User's Guide,”
Ansys, Inc.
,
Canonsburg, PA
.
41.
Li
,
Y. G.
,
Marinai
,
L.
,
Gatto
,
E. L.
,
Pachidis
,
V.
, and
Pilidis
,
P.
,
2009
, “
Multiple-Point Adaptive Performance Simulation Tuned to Aeroengine Test-Bed Data
,”
J. Propul. Power
,
25
(
3
), pp.
635
641
.
42.
Pachidis
,
V.
,
Pilidis
,
P.
,
Marinai
,
L.
, and
Templalexis
,
I.
,
2007
, “
Towards a Full Two Dimensional Gas Turbine Performance Simulator
,”
Aeronaut. J.
,
111
(
1121
), pp.
433
442
.
43.
Lee
,
Y.-S.
,
Ma
,
Y.
, and
Jegadesh
,
G.
,
2000
, “
Rolling-Ball Method and Contour Marching Approach to Identifying Critical Regions for Complex Surface Machining
,”
Comput. Ind.
,
41
(
2
), pp.
163
180
.
44.
Lorenzen
,
T.
, and
Anderson
,
V.
,
1993
,
Design of Experiments: A No-Name Approach
,
CRC Press
,
Boca Raton, FL
.
45.
Olsson
,
A.
,
Sandberg
,
G.
, and
Dahlblom
,
O.
,
2003
, “
On Latin Hypercube Sampling for Structural Reliability Analysis
,”
Struct. Saf.
,
25
(
1
), pp.
47
68
.
46.
Kohavi
,
R.
,
1995
, “
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
,”
14th International Joint Conference on Artificial Intelligence
(
IJCAI'95
), Montreal, Canada, Aug. 20-25, pp. 1137-1143.
47.
Schwefel
,
H.
,
1981
,
Numerical Optimization of Computer Models
(Interdisciplinary Systems Research),
Wiley
, Hoboken, NJ.
48.
Haupt
,
R. L.
, and
Haupt
,
S. E.
,
2004
,
Practical Genetic Algorithms
, 2nd ed.,
Wiley
,
Hoboken, NJ
.
49.
Gunston
,
B.
,
1996
,
Jane's Aero-Engines
,
Jane's Information Group
, London.
50.
Mattingly
,
J.
,
1996
,
Elements of Gas Turbine Propulsion
Vol. 1 (McGraw-Hill Series in Mechanical Engineering),
McGraw-Hill
, New York.
51.
Hotelling
,
H.
,
1953
, “
New Light in the Correlation Coefficient and Its Transforms
,”
J. R. Stat. Soc.
,
15
(
2
), pp.
193
232
.
You do not currently have access to this content.