The implementation of waste heat recovery units on oil and gas offshore platforms demands advances in both design methods and control systems. Model-based control algorithms can play an important role in the operation of offshore power stations. A novel regulator based on a linear model predictive control (MPC) coupled with a steady-state performance optimizer has been developed in the simulink language and is documented in the paper. The test case is the regulation of a power system serving an oil and gas platform in the Norwegian Sea. One of the three gas turbines is combined with an organic Rankine cycle (ORC) turbogenerator to increase the energy conversion efficiency. Results show a potential reduction of frequency drop up to 40% for a step in the load set-point of 4 MW, compared to proportional–integral control systems. Fuel savings in the range of 2–3% are also expected by optimizing on-the-fly the thermal efficiency of the plant.

References

1.
de Alegría
,
I. M.
,
Martín
,
J. L.
,
Kortabarria
,
I.
,
Andreu
,
J.
, and
Ereño
,
P. I.
,
2009
, “
Transmission Alternatives for Offshore Electrical Power
,”
Renewable Sustainable Energy Rev.
,
13
(
5
), pp.
1027
1038
.
2.
Jones
,
P.
, and
Stendius
,
L.
,
2006
, “
The Challenges of Offshore Power System Construction. Troll A, Electrical Power Delivered Successfully to an Oil and Gas Platform in the North Sea
,”
European Wind Energy Conference
, pp.
75
78
.
3.
Hetland
,
J.
,
Kvamsdal
,
H. M.
,
Haugen
,
G.
,
Major
,
F.
,
Kårstad
,
V.
, and
Tjellander
,
G.
,
2009
, “
Integrating a Full Carbon Capture Scheme Onto a 450MWe NGCC Electric Power Generation Hub for Offshore Operations: Presenting the Sevan GTW Concept
,”
Appl. Energy
,
86
(
11
), pp.
2298
2307
.
4.
Torp
,
T. A.
, and
Gale
,
J.
,
2004
, “
Demonstrating Storage of CO2 in Geological Reservoirs: The Sleipner and SACS Projects
,”
Energy
,
29
(
9
), pp.
1361
1369
.
5.
He
,
W.
,
Jacobsen
,
G.
,
Anderson
,
T.
,
Olsen
,
F.
,
Hanson
,
T. D.
,
Korpås
,
M.
,
Toftevaag
,
T.
,
Eek
,
J.
,
Uhlen
,
K.
, and
Johansson
,
E.
,
2010
, “
The Potential of Integrating Wind Power With Offshore Oil and Gas Platforms
,”
Wind Eng.
,
34
(
2
), pp.
125
137
.
6.
Nord
,
L. O.
, and
Bolland
,
O.
,
2012
, “
Steam Bottoming Cycles Offshore—Challenges and Possibilities
,”
J. Power Technol.
,
92
(
3
), pp.
201
207
.
7.
Walnum
,
H. T.
,
Nekså
,
P.
,
Nord
,
L. O.
, and
Andresen
,
T.
,
2013
, “
Modelling and Simulation of CO2 (Carbon Dioxide) Bottoming Cycles for Offshore Oil and Gas Installations at Design and Off-Design Conditions
,”
Energy
,
59
, pp.
513
520
.
8.
Bolland
,
O.
,
Førde
,
M.
, and
Hånde
,
B.
,
1996
, “
Air Bottoming Cycle: Use of Gas Turbine Waste Heat for Power Generation
,”
ASME J. Gas Eng. Turbines Power
,
118
(
2
), pp.
359
368
.
9.
Pierobon
,
L.
,
Benato
,
A.
,
Scolari
,
E.
,
Haglind
,
F.
, and
Stoppato
,
A.
,
2014
, “
Waste Heat Recovery Technologies for Offshore Platforms
,”
Appl. Energy
,
136
, pp.
228
241
.
10.
Pierobon
,
L.
,
Nguyen
,
T.-V.
,
Larsen
,
U.
,
Haglind
,
F.
, and
Elmegaard
,
B.
,
2013
, “
Multi-Objective Optimization of Organic Rankine Cycles for Waste Heat Recovery: Application in an Offshore Platform
,”
Energy
,
58
, pp.
538
549
.
11.
Bhargava
,
R.
,
Bianchi
,
M.
,
Branchini
,
L.
,
De Pascale
,
A.
,
Melino
,
F.
,
Peretto
,
A.
, and
Valentini
,
E.
,
2014
, “
Thermo-Economic Evaluation of ORC System in Off-Shore Applications
,”
ASME
Paper No. GT2014-25170.
12.
Qin
,
S. J.
, and
Badgwell
,
T. A.
,
1996
, “
An Overview of Industrial Model Predictive Control Technology
,”
5th International Conference on Chemical Process Control
, pp.
232
256
.
13.
Sáez
,
D.
,
Zúñiga
,
R.
, and
Cipriano
,
A.
,
2008
, “
Adaptive Hybrid Predictive Control for a Combined Cycle Power Plant Optimization
,”
Int. J. Adapt. Control Signal Process.
,
22
(
2
), pp.
198
220
.
14.
Quoilin
,
S.
,
Aumann
,
R.
,
Grill
,
A.
,
Schuster
,
A.
,
Lemort
,
V.
, and
Spliethoff
,
H.
,
2011
, “
Dynamic Modeling and Optimal Control Strategy of Waste Heat Recovery Organic Rankine Cycles
,”
Appl. Energy
,
88
(
6
), pp.
2183
2190
.
15.
Zhang
,
J.
,
Zhou
,
Y.
,
Wang
,
R.
,
Xu
,
J.
, and
Fang
,
F.
,
2014
, “
Modeling and Constrained Multivariable Predictive Control for ORC (Organic Rankine Cycle) Based Waste Heat Energy Conversion Systems
,”
Energy
,
66
, pp.
128
138
.
16.
Peralez
,
J.
,
Tona
,
P.
,
Nadri
,
M.
,
Dufour
,
P.
, and
Sciarretta
,
A.
,
2015
, “
Optimal Control for an Organic Rankine Cycle on Board a Diesel–Electric Railcar
,”
J. Process Control
,
33
, pp.
1
13
.
17.
Luong
,
D.
,
2013
, “
Modeling, Estimation, and Control of Waste Heat Recovery Systems
,”
Ph.D. thesis
, University of California, Los Angeles, CA.
18.
Hernandez Naranjo
,
J. A.
,
Desideri
,
A.
,
Ionescu
,
C.
,
Quoilin
,
S.
,
Lemort
,
V.
, and
De Keyser
,
R.
,
2014
, “
Increasing the Efficiency of Organic Rankine Cycle Technology by Means of Multivariable Predictive Control
,”
19th World Congress of the International Federation of Automatic Control
, Cape Town, South Africa, Aug. 24–29, pp.
2195
2200
.
19.
Imsland
,
L.
,
Kittilsen
,
P.
, and
Schei
,
T. S.
,
2010
, “
Model-Based Optimizing Control and Estimation Using Modelica Models
,”
Model. Identif. Control
,
31
(
3
), pp.
107
121
.
20.
Willersrud
,
A.
,
Imsland
,
L.
,
Hauger
,
S. O.
, and
Kittilsen
,
P.
,
2013
, “
Short-Term Production Optimization of Offshore Oil and Gas Production Using Nonlinear Model Predictive Control
,”
J. Process Control
,
23
(
2
), pp.
215
223
.
21.
Del Turco
,
P.
,
Asti
,
A.
,
Del Greco
,
A.
,
Bacci
,
A.
,
Landi
,
G.
, and
Seghi
,
G.
,
2011
, “
The ORegen™ Waste Heat Recovery Cycle: Reducing the CO2 Footprint by Means of Overall Cycle Efficiency Improvement
,”
ASME
Paper No. GT2011-45051.
22.
Colonna
,
P.
,
Casati
,
E.
,
Trapp
,
C.
,
Mathijssen
,
T.
,
Larjola
,
J.
,
Turunen-Saaresti
,
T.
, and
Uusitalo
,
A.
,
2015
, “
Organic Rankine Cycle Power Systems: From the Concept to Current Technology, Applications, and an Outlook to the Future
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), pp.
1
19
.
23.
The MathWorks, Inc.
,
2014
,
Getting Started With SIMULINK
,
The MathWorks
,
Natick, MA
.
24.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
25.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
Hoboken, NJ
.
26.
Verein Deutscher Ingenieure
,
1953
,
VDI-Wärmeatlas: Berechnungsblätter für den Wärmeübergang
,
Springer-Verlag
,
Berlin
.
27.
Schobeiri
,
M.
,
2005
,
Turbomachinery Flow Physics and Dynamic Performance
,
Springer
,
Berlin
.
28.
Haglind
,
F.
, and
Elmegaard
,
B.
,
2009
, “
Methodologies for Predicting the Part-Load Performance of Aero-Derivative Gas Turbines
,”
Energy
,
34
(
10
), pp.
1484
1492
.
29.
Veres
,
J. P.
,
1994
, “
Centrifugal and Axial Pump Design and Off-Design Performance Prediction
,” NASA, Sunnyvale, United States of America,
Technical Memorandum No. 106745
.
30.
Pierobon
,
L.
,
Casati
,
E.
,
Casella
,
F.
,
Haglind
,
F.
, and
Colonna
,
P.
,
2014
, “
Design Methodology for Flexible Energy Conversion Systems Accounting for Dynamic Performance
,”
Energy
,
68
, pp.
667
679
.
31.
Iyengar
,
K.
,
Rambabu
,
K.
, and
Ydstie
,
E. B.
,
2013
, “
Dynamic Modeling and Control of Gas Turbines in Combined Cycle Power Plants
,”
AIChE Annual Meeting.
32.
Casella
,
F.
,
Mathijssen
,
T.
,
Colonna
,
P.
, and
van Buijtenen
,
J.
,
2012
, “
Dynamic Modeling of ORC Power Systems
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), pp.
1
12
.
33.
Quoilin
,
S.
,
Broek
,
M. V. D.
,
Declaye
,
S.
,
Dewallef
,
P.
, and
Lemort
,
V.
,
2013
, “
Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems
,”
Renewable Sustainable Energy Rev.
,
22
, pp.
168
186
.
34.
Camacho
,
E. F.
, and
Alba
,
C. B.
,
2013
,
Model Predictive Control
,
Springer
,
London
.
35.
Chan
,
K.
,
Dozal-Mejorada
,
E.
,
Cheng
,
X.
,
Kephart
,
R.
, and
Ydstie
,
B.
,
2014
, “
Predictive Control With Adaptive Model Maintenance: Application to Power Plants
,”
Comput. Chem. Eng.
,
70
, pp.
91
103
.
36.
Bemporad
,
A.
,
Morari
,
M.
, and
Ricker
,
N. L.
,
2014
,
Model Predictive Control Toolbox for Use With MATLAB
,
The MathWorks
,
Natick, MA
.
37.
Schmid
,
C.
, and
Biegler
,
L. T.
,
1994
, “
Quadratic Programming Methods for Reduced Hessian SQP
,”
Comput. Chem. Eng.
,
18
(
9
), pp.
817
832
.
38.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.
39.
Ginosar
,
D. M.
,
Petkovic
,
L. M.
, and
Guillen
,
D. P.
,
2011
, “
Thermal Stability of Cyclopentane as an Organic Rankine Cycle Working Fluid
,”
Energy Fuels
,
25
(
9
), pp.
4138
4144
.
40.
Pasetti
,
M.
,
Invernizzi
,
C. M.
, and
Iora
,
P.
,
2014
, “
Thermal Stability of Working Fluids for Organic Rankine Cycles: An Improved Survey Method and Experimental Results for Cyclopentane, Isopentane and n-Butane
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
764
774
.
41.
Lazzaretto
,
A.
,
Toffolo
,
A.
,
Reini
,
M.
,
Taccani
,
R.
,
Zaleta-Aguilar
,
A.
,
Rangel-Hernandez
,
V.
, and
Verda
,
V.
,
2006
, “
Four Approaches Compared on the TADEUS (Thermoeconomic Approach to the Diagnosis of Energy Utility Systems) Test Case
,”
Energy
,
31
(
10–11
), pp.
1586
1613
.
42.
Lazzaretto
,
A.
, and
Toffolo
,
A.
,
2006
, “
A Critical Review of the Thermoeconomic Diagnosis Methodologies for the Location of Causes of Malfunctions in Energy Systems
,”
ASME J. Energy Resour. Technol.
,
128
(
4
), pp.
335
342
.
You do not currently have access to this content.