The prometheus combustor design system aims to reduce the complexity of evaluating combustor designs by automatically defining preprocessing, simulation, and postprocessing tasks based on the automatic identification of combustor features within the computer-aided design (CAD) environment. This system enables best practice to be codified and topological changes to a combustor's design to be more easily considered within an automated design process. The following paper presents the prometheus combustor design system and its application to the multiobjective isothermal optimization of a combustor prediffuser and the multifidelity isothermal optimization of a fuel injector feed arm in combination with a surrogate modeling strategy accelerated via a high-performance graphical processing unit (GPU).

References

1.
Painchaud-Ouellet
,
S.
,
Tribes
,
C.
,
Trépanier
,
J.
, and
Pelletier
,
D.
,
2006
, “
Airfoil Shaped Optimization Using a Nonuniform Rational B-Spline Parameterization Under Thickness Constraint
,”
AIAA J.
,
44
(
10
), pp.
2170
2178
.
2.
Shahrokhi
,
A.
, and
Jahangirian
,
A.
,
2007
, “
Airfoil Shape Parameterization for Optimum Navier–Stokes Design With Genetic Algorithm
,”
Aerosp. Sci. Technol.
,
11
(
6
), pp.
443
450
.
3.
Brooks
,
C.
,
Forrester
,
A.
,
Keane
,
A.
, and
Shahpar
,
S.
,
2011
, “
Multi-Fidelity Design Optimisation of a Transonic Compressor Rotor
,”
9th European Turbomachinery Conference
, Istanbul, Mar. 21–25, pp.
1267
1276
.
4.
Epstein
,
B.
,
Jameson
,
A.
,
Peigin
,
S.
,
Roman
,
D.
,
Harrison
,
N.
, and
Vassberg
,
J.
,
2009
, “
Comparative Study of Three-Dimensional Wing Drag Minimization by Different Optimization Techniques
,”
J. Aircr.
,
46
(
2
), pp.
526
541
.
5.
Peigin
,
S.
, and
Epstein
,
B.
,
2007
, “
Efficient Approach for Multipoint Aerodynamic Wing Design of Business Jet Aircraft
,”
AIAA J.
,
45
(
11
), pp.
2612
2621
.
6.
Despierre
,
A.
,
Stuttaford
,
P.
, and
Rubini
,
P.
,
1997
, “
Preliminary Gas Turbine Combustor Design Using a Genetic Algorithm
,”
ASME
Paper No. 97-GT-072.
7.
Rogero
,
J.
, and
Rubini
,
P.
,
2001
, “
Optimisation of Combustor Wall Heat Transfer and Pollutant Emissions for Preliminary Design Using Evolutionary Techniques
,”
15th International Symposium on Airbreathing Engines
(ISOABE), Bangalore, India, Sept. 2–7, pp.
605
614
.
8.
Duchaine
,
F.
,
Morel
,
T.
, and
Gicquel
,
M.
,
2009
, “
Computational-Fluid-Dynamics-Based Kriging Optimization Tool for Aeronautical Combustion Chambers
,”
AIAA J.
,
47
(
3
), pp.
631
645
.
9.
Voutchkov
,
I.
,
Keane
,
A.
, and
Fox
,
R.
,
2006
, “
Robust Structural Design of a Simplified Jet Engine Model Using Multiobjective Optimization
,”
AIAA
Paper No. 2006-7003.
10.
Toal
,
D.
,
Keane
,
A.
,
Benito
,
D.
,
Dixon
,
J.
,
Yang
,
J.
,
Price
,
M.
,
Robinson
,
T.
,
Remouchamps
,
A.
, and
Kill
,
N.
,
2014
, “
Multi-Fidelity Multidisciplinary Whole Engine Thermo-Mechanical Design Optimization
,”
J. Propul. Power
,
30
(
6
), pp.
1654
1666
.
11.
Zhang
,
X.
,
Toal
,
D.
,
Bressloff
,
N.
,
Keane
,
A.
,
Witham
,
F.
,
Gregory
,
J.
,
Stow
,
S.
,
Goddard
,
C.
,
Zedda
,
M.
, and
Rodgers
,
M.
,
2014
, “
Prometheus: A Geometry-Centric Optimisation System for Combustor Design
,”
ASME
Paper No. GT2014-25886.
12.
Stuttaford
,
P.
, and
Rubini
,
P.
,
1997
, “
Preliminary Gas Turbine Combustor Design Using a Network Approach
,”
ASME J. Eng. Gas Turbines Power
,
119
(
3
), pp.
546
552
.
13.
Simpson
,
T.
,
Peplinski
,
J.
,
Kock
,
P.
, and
Allen
,
J.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
.
14.
Queipo
,
N.
,
Haftka
,
R.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P.
,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
.
15.
Forrester
,
A.
, and
Keane
,
A.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aerosp. Sci.
,
45
(
1–3
), pp.
50
79
.
16.
Sacks
,
J.
,
Welch
,
W.
,
Mitchell
,
T.
, and
Wynn
,
H.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
435
.
17.
Jones
,
D.
,
2001
, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,”
J. Global Optim.
,
21
(
4
), pp.
345
383
.
18.
Jones
,
D.
,
Schonlau
,
M.
, and
Welch
,
W.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
19.
Toal
,
D.
,
Forrester
,
A.
,
Bressloff
,
N.
,
Keane
,
A.
, and
Holden
,
C.
,
2009
, “
An Adjoint for Likelihood Maximization
,”
Proc. R. Soc. A
,
465
(
2111
), pp.
3267
3287
.
20.
Toal
,
D.
,
Bressloff
,
N.
,
Keane
,
A.
, and
Holden
,
C.
,
2011
, “
The Development of a Hybridized Particle Swarm for Kriging Hyperparameter Tuning
,”
Eng. Optim.
43
(
6
), pp.
675
699
.
21.
Toal
,
D.
,
2015
, “
Some Considerations Regarding the Use of Multi-Fidelity Kriging in the Construction of Surrogate Models
,”
Struct. Multidiscip. Optim.
,
51
(
6
), pp.
1223
1245
.
22.
Forrester
,
A.
,
Sóbester
,
A.
, and
Keane
,
A.
,
2007
, “
Multi-Fidelity Optimization Via Surrogate Modelling
,”
Proc. R. Soc. A
,
463
(
2088
), pp.
3251
3269
.
23.
Kuya
,
Y.
,
Takeda
,
K.
,
Zhang
,
X.
, and
Forrester
,
A.
,
2011
, “
Multifidelity Surrogate Modeling of Experimental and Computational Aerodynamic Data Sets
,”
AIAA J.
,
49
(
2
), pp.
289
298
.
24.
Toal
,
D.
, and
Keane
,
A.
,
2011
, “
Efficient Multi-Point Aerodynamic Design Optimization Via Co-Kriging
,”
J. Aircr.
,
48
(
5
), pp.
1685
1695
.
25.
Yamazaki
,
W.
, and
Mavriplis
,
D.
,
2013
, “
Derivative-Enhanced Variable Fidelity Surrogate Modeling for Aerodynamic Functions
,”
AIAA J.
,
51
(
1
), pp.
126
137
.
26.
Ghoreyshi
,
M.
,
Badcock
,
K.
, and
Woodgate
,
M.
,
2009
, “
Accelerating the Numerical Generation of Aerodynamic Models for Flight Simulation
,”
J. Aircr.
,
46
(
3
), pp.
972
980
.
27.
Han
,
Z.
, and
Görtz
,
S.
,
2012
, “
Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling
,”
AIAA J.
,
50
(
9
), pp.
1885
1896
.
28.
Han
,
Z.
,
Görtz
,
S.
, and
Zimmermann
,
R.
,
2013
, “
Improving Variable-Fidelity Surrogate Modeling Via Gradient-Enhanced Kriging and a Generalised Hybrid Bridge Function
,”
Aerosp. Sci. Technol.
,
25
(
1
), pp.
177
189
.
29.
Han
,
Z.
,
Zimmermann
,
R.
, and
Görtz
,
S.
,
2012
, “
Alternative Cokriging Model for Variable-Fidelity Surrogate Modeling
,”
AIAA J.
,
50
(
5
), pp.
1205
1210
.
30.
Kennedy
,
M.
, and
O'Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.
31.
Keane
,
A.
,
2006
, “
Statistical Improvement Criteria for Use in Mulitobjective Design Optimization
,”
AIAA J.
,
44
(
4
), pp.
879
891
.
32.
Toal
,
D.
, and
Keane
,
A.
,
2012
, “
Non-Stationary Kriging for Design Optimization
,”
Eng. Optim.
,
44
(
6
), pp.
741
765
.
33.
Cha
,
C.
,
Ireland
,
P.
,
Denman
,
P.
, and
Savarianandam
,
V.
,
2012
, “
Turbulence Level are High at the Combustor–Turbine Interface
,”
ASME
Paper No. GT2012-69130.
34.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.