The organic Rankine cycle (ORC) offers great potential for waste heat recovery and use of low-temperature sources for power generation. However, the ORC thermal efficiency is limited by the relatively low-temperature level, and it is, therefore, of major importance to design ORC components with high efficiencies and minimized losses. The use of organic fluids creates new challenges for turbine design, due to dense gas behavior and the low speed of sound. The design and performance predictions for steam and gas turbines have been initially based on measurements and numerical simulations of flow through two-dimensional cascades of blades. In case of ORC turbines and related fluids, such an approach requires the use of a specially designed closed cascade wind tunnel. In this contribution the design and process engineering of a continuous running wind tunnel for organic vapors is presented. The wind tunnel can be operated with heavy weight organic working fluids within a broad range of pressure and temperature levels. For this reason, the use of classical design rules for atmospheric wind tunnels is limited. The thermodynamic cycle process in the closed wind tunnel is modeled, and simulated by means of a professional power plant analysis tool, including a database for the ORC fluid properties under consideration. The wind tunnel is designed as a pressure vessel system and this leads to significant challenges particular for the employed wide angle diffuser, settling chamber, and nozzle. Detailed computational fluid dynamics (CFD) was performed in order to optimize the important wind tunnel sections.

References

References
1.
Adam
,
A. W.
,
1995
,
Organic Rankine Engines
,
Wiley
,
New York
, pp.
2157
2161
.
2.
Schuster
,
A.
,
Karellas
,
S.
,
Kakaras
,
E.
, and
Spliethoff
,
H.
,
2009
, “
Energetic and Economic Investigation of Organic Rankine Cycle Applications
,”
Appl. Therm. Eng.
,
29
(
8–9
), pp.
1809
1817
.
3.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
3059
3067
.
4.
Invernizzi
,
C. M.
,
2013
,
Closed Power Cycles
,
Springer
,
London
, Chap. 2.
5.
Congedo
,
P. M.
,
Cinnella
,
P.
, and
Corre
,
C.
,
2009
, “
Shape Optimization for Dense Gas Flows in Turbine Cascades
,”
Computational Fluid Dynamics 2006
,
H.
Deconinck
, and
E.
Dick
, eds.,
Springer
,
Berlin
, pp.
555
560
.
6.
Marconcini
,
M.
,
Rubechini
,
F.
,
Arnone
,
A.
,
Del Greco
,
A. S.
, and
Biagi
,
R.
,
2012
, “
Aerodynamic Investigation of a High Pressure Ratio Turbo-Expander for Organic Rankine Cycle Applications
,”
ASME
Paper No. GT2012-69409.
7.
Termuehlen
,
H.
,
2001
,
100 Years of Power Plant Development. Focus on Steam and Gas Turbines as Prime Movers
,
ASME Press
,
New York
.
8.
Li
,
M.
,
Wang
,
J.
,
Gao
,
L.
,
Niu
,
X.
, and
Dai
,
Y.
,
2012
, “
Performance Evaluation of a Turbine Used in a Regenerative Organic Rankine Cycle
,”
ASME
Paper No. GT2012-68441.
9.
Kosowski
,
K.
,
Piwowarski
,
M.
,
Stepien
,
R.
, and
Wlodarski
,
W.
,
2012
, “
Design and Investigations of a Micro-Turbine Flow Part
,”
ASME
Paper No. GT2012-69222.
10.
Erhart
,
T. G.
,
Eicker
,
U.
, and
Infield
,
D.
,
2013
, “
Influence of Condenser Conditions on Organic Rankine Cycle Load Characteristics
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042301
.
11.
Bloch
,
H. P.
, and
Singh
,
M. P.
,
2008
,
Steam Turbines: Design, Applications, and Re-Rating
, 2nd ed.,
McGraw-Hill
,
New York
, Chap. 1.
12.
Dixon
,
S. L.
,
1998
,
Fluid Mechanics and Thermodynamics of Turbomachinery
, 4th ed.,
Elsevier Butterworth-Heinemann
,
Boston, MA
, Chap. 3.http://www.steag-systemtechnologies.com/fileadmin/user_upload/steag-systemtechnologies.com/unsere_leistungen/EBSILON_R_Professional/PDB_EBSILON_System_Engineering_and_Design_eng.pdf
13.
STEAG
,
2014
, “
EBSILON®Professional
,” STEAG Energy Services GmbH, Essen, Germany, http://www.steag-systemtechnologies.com/ebsilonprofessional0.html
14.
Merle
,
X.
, and
Cinnella
,
P.
,
2014
, “
Bayesian Quantification of Thermodynamic Uncertainties in Dense Gas Flows
,”
Reliab. Eng. Syst. Saf.
,
134
, pp.
305
323
.
15.
Colonna
,
P.
,
Rebay
,
S.
,
Harnick
,
J.
, and
Guardone
,
A.
,
2006
, “
Real-Gas Effects in ORC Turbine Flow Simulations: Influence of Thermodynamic Models on Flow Fields and Performance Parameters
,” European Conference on Computational Fluid Dyanamics (ECCOMAS CFD 2006), Egmond aan Zee, The Netherlands, Sept. 5–8.
16.
Traupel
,
W.
,
1952
, “
Zur dynamik realer Gase
,”
Forsch. Geb. Ingenieurwes.
,
18
(
1
), pp.
3
9
.
17.
Hasselmann
,
K.
,
Reinker
,
F.
,
aus der Wiesche
,
S.
,
Kenig
,
E.
,
Dubberke
,
F.
, and
Vrabec
,
J.
,
2014
, “
Performance Predictions of Axial Turbines for Organic Rankine Cycle (ORC) Applications Based on Measurements of the Flow Through Two-Dimensional Cascades of Blades
,”
ASME
Paper No. POWER2014-32098.
18.
Thompson
,
P. A.
,
1971
, “
A Fundamental Derivative in Gasdynamics
,”
Phys. Fluids
,
14
(
9
), pp.
1843
1849
.
19.
Cramer
,
M. S.
, and
Tarkenton
,
G. M.
,
1992
, “
Transonic Flows of Bethe-Zel'dovich-Thompson Fluids
,”
J. Fluid Mech.
,
240
(
1
), pp.
197
228
.
20.
Lambrakis
,
K. C.
,
1972
, “
Existence of Real Fluids With a Negative Fundamental Derivative Γ
,”
Phys. Fluids
,
15
(
5
), pp.
933
935
.
21.
Colonna
,
P.
, and
Guardone
,
A.
,
2006
, “
Molecular Interpretation of Nonclassical Gas Dynamics of Dense Vapors Under the van der Waals Model
,”
Phys. Fluids
,
18
(
5
), p.
056101
.
22.
Cogswell
,
F. J.
,
Gerlach
,
D. W.
,
Wagner
,
T. C.
, and
Mulugeta
,
J.
,
2011
, “
Design of an Organic Rankine Cycle for Waste Heat Recovery From a Portable Diesel Generator
,”
ASME
Paper No. IMECE2011-65489.
23.
Huber
,
M. L.
,
Laesecke
,
A.
, and
Perkins
,
R. A.
,
2003
, “
Model for the Viscosity and Thermal Conductivity of Refrigerants, Including a New Correlation for the Viscosity of R134a
,”
Ind. Eng. Chem. Res.
,
42
(
13
), pp.
3163
3178
.
24.
Colonna
,
P.
,
Guardone
,
A.
,
Nannan
,
N. R.
, and
Zamfirescu
,
C.
,
2008
, “
Design of the Dense Gas Flexible Asymmetric Shock Tube
,”
ASME J. Fluids Eng.
,
130
(
3
), p.
034501
.
25.
Spinelli
,
A.
,
Pini
,
M.
,
Dossena
,
V.
,
Gaetani
,
P.
, and
Casella
,
F.
,
2013
, “
Design, Simulation, and Construction of a Test Rig for Organic Vapors
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042304
.
26.
Spinelli
,
A.
,
Dossena
,
V.
, and
Gaetani
,
P.
,
2013
, “
Start-Up of a Test Rig for Organic Vapors
,”
2nd International Seminar on ORC Power Systems
(ASME ORC 2013), Rotterdam, The Netherlands, Oct. 7–8.
27.
Barlow
,
J. B.
,
Rae
,
W. H.
, and
Pope
,
A.
,
1999
,
Low Speed Wind Tunnel Testing
, 3rd ed.,
Wiley
,
New York
, Chap. 3.
28.
Sargison
,
J. E.
,
Walker
,
G. J.
, and
Rossi
,
R.
,
2004
, “
Design and Calibration of a Wind Tunnel With a Two Dimensional Contraction
,”
15th Australasian Fluid Mechanics Conference
, (
afms 15
), Sydney, Australia, Dec. 13–17, Paper No. AFMC00183.
29.
Liepmann
,
H. W.
, and
Roshko
,
A.
,
2001
,
Elements of Gasdynamics
,
Dover Publications
,
New York
, Chap. 5.
You do not currently have access to this content.