An experimental study was carried out to investigate the aeromechanics and wake characteristics of dual-rotor wind turbines (DRWTs) in either co-rotating or counter-rotating configuration, in comparison to those of a conventional single-rotor wind turbine (SRWT). The experiments were performed in a large-scale aerodynamic/atmospheric boundary layer (AABL) wind tunnel, available at Iowa State University with the oncoming atmospheric boundary-layer (ABL) airflows under neutral stability conditions. In addition to measuring the power output performance of DRWT and SRWT models, static and dynamic wind loads acting on those turbine models were also investigated. Furthermore, a high-resolution digital particle image velocimetry (PIV) system was used to quantify the flow characteristics in the near wakes of the DRWT and SRWT models. The detailed wake-flow measurements were correlated with the power outputs and wind-load measurement results of the wind-turbine models to elucidate the underlying physics to explore/optimize design of wind turbines for higher power yield and better durability.

References

References
1.
Betz
,
A.
,
1919
, “
Schraubenpropeller mit Geringstem Energieverlust (Ship Propellers with Minimum Loss of Energy)
,” Ph.D. thesis, University of Göttingen, Göttingen, Germany.
2.
Okulov
,
V. L.
, and
Sørensen
,
J. N.
,
2008
, “
Refined Betz Limit for Rotors With a Finite Number of Blades
,”
Wind Energy
,
11
(
4
), pp.
415
426
.
3.
Sharma
,
A.
, and
Frere
,
A.
,
2009
, “
Aerodynamic Efficiency Entitlement Study of a Horizontal Axis Wind Turbine
,” Internal Report, General Electric Global Research Center, Schenectady, NY.
4.
Rosenberg
,
A.
,
Selvaraj
,
S.
, and
Sharma
,
A.
,
2014
, “
A Novel Dual-Rotor Turbine for Increased Wind Energy Capture
,”
J. Phys.: Conf. Ser.
,
524
(
1
), p.
012078
.
5.
Newman
,
B. G.
,
1986
, “
Multiple Actuator-Disk Theory for Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn
,
24
(
3
), pp.
215
225
.
6.
Appa
,
K.
,
2002
, “
Counter Rotating Wind Turbine System
,” Technical Report, Energy Innovations Small Grant (EISG) Program, Sacramento, CA.
7.
Jung
,
S. N.
,
No
,
T. S.
, and
Ryu
,
K. W.
,
2005
, “
Aerodynamic Performance Prediction of a 30 kW Counter-Rotating Wind Turbine System
,”
Renewable Energy
,
30
(
5
), pp.
631
644
.
8.
Habash
,
R. W. Y.
,
Groza
,
V.
,
Yang
,
Y.
,
Blouin
,
C.
, and
Guillemette
,
P.
,
2011
, “
Performance of a Contra Rotating Small Wind Energy Converter
,”
ISRN Mech. Eng.
,
2011
, p.
828739
.
9.
Shen
,
W. Z.
,
Zakkam
,
V. A. K.
,
Sørensen
,
J. N.
, and
Appa
,
K.
,
2007
, “
Analysis of Counter-Rotating Wind Turbines
,”
J. Phys.: Conf. Ser.
,
75
(1), p.
012003
.
10.
Zhou
,
Y.
, and
Kareem
,
A.
,
2002
, “
Definition of Wind Profiles in ASCE 7
,”
J. Struct. Eng.
,
128
(
8
), pp.
1082
1086
.
11.
Jain
,
P.
,
2007
,
Wind Energy Engineering
,
McGraw-Hill
,
New York
.
12.
Hansen
,
K. S.
,
Barthelmie
,
R. J.
,
Jensen
,
L. E.
, and
Sommer
,
A.
,
2012
, “
The Impact of Turbulence Intensity and Atmospheric Stability on Power Deficits Due to Wind Turbine Wakes at Horns Rev Wind Farm
,”
Wind Energy
,
15
(
1
), pp.
183
196
.
13.
Tong
,
W.
,
2002
,
Wind Power Generation and Wind Turbine Design
,
WIT Press
,
Billerica, MA
.
14.
Yuan
,
W.
,
Tian
,
W.
,
Ozbay
,
A.
, and
Hu
,
H.
,
2014
, “
An Experimental Study on the Effects of Relative Rotation Direction on the Wake Interferences Among Tandem Wind Turbines
,”
Sci. China—Phys. Mech. Astron.
,
57
(
5
), pp.
935
949
.
15.
Tian
,
W.
,
Ozbay
,
A.
, and
Hu
,
H.
,
2014
, “
Effects of Incoming Surface Wind Conditions on the Wake Characteristics and Dynamic Wind Loads Acting on a Wind Turbine Model
,”
Phys. Fluids
,
26
(
12
), p. 125108.
16.
Wilson
,
R. E.
,
1994
, “
Aerodynamic Behavior of Wind Turbines
,”
Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engineering
,
D. A.
Spera
, ed.,
ASME
,
New York
, pp.
215
282
.
17.
Alfredsson
,
P. H.
,
Dahlberg
,
J. A.
, and
Vermeulen
,
P. E. J.
,
1982
, “
A Comparison Between Predicted and Measured Data From Wind Turbine Wakes
,”
Wind Eng.
,
6
(
3
), pp.
149
155
.
18.
Chamorro
,
L. P.
,
Arndt
,
R. E. A.
, and
Sotiropoulos
,
F.
,
2011
, “
Reynolds Number Dependence of Turbulence Statistics in the Wake of Wind Turbines
,”
Wind Energy
,
15
(
5
), pp.
733
742
.
19.
Hu
,
H.
,
Yang
,
Z.
, and
Sarkar
,
P.
,
2012
, “
Dynamic Wind Loads and Wake Characteristics of a Wind Turbine Model in an Atmospheric Boundary Layer Wind
,”
Exp. Fluids
,
52
(
5
), pp.
1277
1294
.
20.
Vermeer
,
L. J.
,
Sørensen
,
J. N.
, and
Crespo
,
A.
,
2003
, “
Wind Turbine Wake Aerodynamics
,”
Prog. Aerosp. Sci.
,
39
(
6–7
), pp.
467
510
.
21.
Chamorro
,
L. P.
, and
Porte-Agel
,
F.
,
2009
, “
A Wind-Tunnel Investigation of Wind-Turbine Wakes: Boundary Layer Turbulence Effects
,”
Boundary Layer Meteorol.
,
132
(
1
), pp.
129
149
.
22.
Meyers
,
J.
, and
Meneveau
,
C.
,
2013
, “
Flow Visualization Using Momentum and Energy Transport Tubes and Applications to Turbulent Flow in Wind Farms
,”
J. Fluid Mech.
,
715
, pp.
335
358
.
23.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
.
24.
Whale
,
J.
,
Anderson
,
C. G.
,
Bareiss
,
R.
, and
Wagner
,
S.
,
2000
, “
An Experimental and Numerical Study of the Vortex Structure in the Wake of a Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
84
(
1
), pp.
1
21
.
25.
Sherry
,
M.
,
Sheridan
,
J.
, and
Lo Jacono
,
D.
,
2013
, “
Characterization of a Horizontal Axis Wind Turbine's Tip and Root Vortices
,”
Exp. Fluids
,
54
(
3
), p.
1417
.
You do not currently have access to this content.