Modified modal domain analysis (MMDA) is a method to generate an accurate reduced-order model (ROM) of a bladed disk with geometric mistuning. An algorithm based on the MMDA ROM and a state observer is developed to estimate forcing functions for synchronous (including integer multiples) conditions from the dynamic responses obtained at few nodal locations of blades. The method is tested on a simple spring-mass model, finite element model (FEM) of a geometrically mistuned academic rotor, and FEM of a bladed rotor of an industrial-scale transonic research compressor. The accuracy of the forcing function estimation algorithm is examined by varying the order of ROM and the number of vibration output signals.

References

1.
Seinturier
,
E.
,
2007
, “
Forced Response Computation for Bladed Disks: Industrial Practices and Advanced Methods
,” 12th
IFToMM
World Congress, Besancon, France, June 18–21, pp. 1–7.
2.
Vahdati
,
M.
,
Sayma
,
A.
, and
Imregun
,
M.
,
2000
, “
An Integrated Nonlinear Approach for Turbomachinery Forced Response Prediction—Part II: Case Studies
,”
J. Fluids Struct.
,
14
(
1
), pp.
103
125
.
3.
Mayorca
,
M.
,
Vogt
,
D. M.
,
Martensson
,
H.
,
Andersson
,
C.
, and
Fransson
,
T.
,
2012
, “
Uncertainty of Forced Response Numerical Predictions of an Industrial Blisk: Comparison With Experiments
,”
ASME
Paper No. GT2012-69534.
4.
Lakshminarayana
,
B.
,
1981
, “
Techniques for Aerodynamic and Turbulence Measurements in Turbomachinery Rotors
,”
ASME J. Eng. Gas Turbines Power
,
103
(
2
), pp.
374
392
.
5.
Liu
,
T.
,
Torgerson
,
S.
,
Sullivan
,
J.
,
Johnston
,
R.
, and
Fleeter
,
S.
,
2002
, “
Transonic Rotor Blade Pressure Measurement Using Fluorescent Paints
,”
J. Propul. Power
,
18
(
2
), pp.
491
493
.
6.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2003
, “
Wake, Shock, and Potential Field Interactions in a 1.5 Stage Turbine Part II: Vane-Vane Interaction and Discussion of Results
,”
ASME J. Turbomach.
,
125
(
1
), pp.
40
47
.
7.
Kammerer
,
A.
, and
Abhari
,
R. S.
,
2010
, “
Blade Forcing Function and Aerodynamic Work Measurements in a High Speed Centrifugal Compressor With Inlet Distortion
,”
ASME J. Eng. Gas Turbines Power
,
132
(
9
), p.
092504
.
8.
Sinha
,
A.
,
2009
, “
Reduced-Order Model of a Bladed Rotor With Geometric Mistuning
,”
ASME J. Turbomach.
,
131
(
3
), p.
031007
.
9.
Bhartiya
,
Y.
, and
Sinha
,
A.
,
2013
, “
Reduced Order Modeling of a Bladed Rotor With Geometric Mistuning Via Estimated Deviations in Mass and Stiffness Matrices
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
052501
.
10.
Vishwakarma
,
V.
,
Sinha
,
A.
,
Bhartiya
,
Y.
, and
Brown
,
J. M.
,
2015
, “
Modified Modal Domain Analysis of a Bladed Rotor Using Coordinate Measurement Machine Data on Geometric Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
137
(4), p. 042502.
11.
Choi
,
Y. S.
,
Key
,
N.
, and
Fleeter
,
S.
,
2011
, “
Vane Clocking Effects on the Resonant Response of an Embedded Rotor
,”
J. Propul. Power
,
27
(
1
), pp.
71
77
.
12.
Warren
,
C.
,
Niezrecki
,
C.
, and
Avitabile
,
P.
,
2010
, “
Optical Non-Contacting Vibration Measurement of Rotating Turbine Blades II
,”
IMAC-XXVIII
, A Conference on Structural Dynamics, Jacksonville, FL, Feb. 1–4, pp.
39
44
.
13.
Mercadel
,
M.
,
vonFlotow
,
A.
, and
Tappert
,
P.
,
2001
, “
Damage Identification by NSMS Blade Resonance Tracking in Mistuned Rotors
,”
IEEE Aerospace Conferences
(
AERO
),
Big Sky
,
MT
, Mar. 10–17, pp. 7-3263–7-3277.
14.
Salhi
,
B.
,
Lardies
,
J.
,
Berthillier
,
M.
,
Voinis
,
P.
, and
Bodel
,
C.
,
2007
, “
A Subspace Approach for the Analysis of Blade Tip Timing Data
,” 12th
IFToMM
World Congress, Besancon, France, June 18–21, pp. 885–906.
15.
Sinha
,
A.
,
2007
,
Linear Systems: Optimal and Robust Control
,
CRC Press
, Boca Raton, FL.
16.
Lee
,
S.
, and
Sinha
,
A.
,
1986
, “
Design of an Active Vibration Absorber
,”
J. Sound Vib.
,
109
(
2
), pp.
347
352
.
17.
Hillary
,
B.
, and
Ewins
,
D. J.
,
1984
, “
The Use of Strain Gauges in Force Determination and Frequency Response Function Measurements
,” Second International Modal Analysis Conference (IMAC), Orlando, FL, Feb. 6–9, pp. 627–634.
18.
Griffin
,
J. H.
, and
Hoosac
,
T. M.
,
1984
, “
Model Development and Statistical Investigation of Turbine Blade Mistuning
,”
ASME J. Vib., Stress Reliab. Des.
,
106
(
2
), pp.
204
210
.
19.
Sinha
,
A.
, and
Bhartiya
,
Y.
,
2009
, “
Modeling Geometric Mistuning of a Bladed Rotor: Modified Modal Domain Analysis
,”
IUTAM Symposium on Emerging Trends in Rotor Dynamics
, New Delhi, India, Mar. 22–26, pp. 177–184.
You do not currently have access to this content.