Gas-expanded lubricants (GELs) have the potential to increase bearing energy efficiency, long-term reliability, and provide for a degree of control over the rotordynamics of high-speed rotating machines. Previous work has shown that these tunable mixtures of synthetic oil and dissolved carbon dioxide could be used to maximize the stability margin of a machine during startup by controlling bearing stiffness and damping. This allows the user to then modify the fluid properties after reaching a steady operating speed to minimize bearing power loss and reduce operating temperatures. However, it is unknown how a typical machine would respond to rapid changes in bearing stiffness and damping due to changes in the fluid properties once the machine has completed startup. In this work, the time-transient behavior of a high-speed compressor was evaluated numerically to examine the effects of rapidly changing bearing dynamics on rotordynamic performance. Two cases were evaluated for an eight-stage centrifugal compressor: an assessment under stable operating conditions as well as a study of the instability threshold. These case studies presented two contrasting sets of transient operating conditions to evaluate, the first being critical to the viability of using GELs in high-speed rotating machinery. The fluid transitions studied for machine performance were between that of a polyol ester (POE) synthetic lubricant and a GEL with a 20% carbon dioxide content. The performance simulations were carried out using a steady-state thermoelastohydrodynamic (TEHD) bearing model, which provided bearing stiffness and damping coefficients as inputs to a time-transient rotordynamic model using Timoshenko beam finite elements. The displacements and velocities of each node were solved for using a fourth-order Runge–Kutta method and provided information on the response of the rotating machine due to rapid changes in bearing stiffness and damping coefficients. These changes were assumed to be rapid due to (1) the short lubricant residence times calculated for the bearings and (2) rapid mixing due to high shear rates in the machine bearings causing sudden changes in the fluid properties. This operating condition was also considered to be a worst-case scenario as an abrupt change in the bearing dynamics would likely solicit a more extreme rotordynamic response than a more gradual change, making this analysis quite important. The results of this study provide critical insight into the nature of operating a rotating machine and controlling its behavior using GELs, which will be vital to the implementation of this technology.

References

References
1.
Harangozo
,
A. V.
,
Stolarski
,
T. A.
, and
Gozdawa
,
R. J.
,
1991
, “
The Effect of Different Lubrication Methods on the Performance of a Tilting-Pad Journal Bearing
,”
Tribol. Trans.
,
34
(
4
), pp.
529
536
.
2.
Allaire
,
P.
,
Humphris
,
R.
, and
Barrett
,
L.
,
1986
, “
Critical Speeds and Unbalance Response of a Flexible Rotor in Magnetic Bearings
,”
European Turbomachinery Symposium
, London, Oct. 27–28.
3.
Allaire
,
P.
,
Humphris
,
R.
, and
Kasarda
,
M.
,
1987
, “
Magnetic Bearing/Damper Effects on Unbalance Response of Flexible Rotors
,”
22nd Annual IECEC Conference
, Philadelphia, PA, Aug. 10–14, pp.
824
828
.
4.
Humphris
,
R.
,
Allaire
,
P.
, and
Lewis
,
D.
,
1986
, “
Design and Testing of Magnetic Bearings for Vibration Reduction
,”
41st Meeting of the Mechanical Failures Prevention Group
, Naval Air Test Center, Patuxent River, MD, Oct. 28–30, pp.
92
100
.
5.
Maslen
,
E.
,
Hermann
,
P.
, and
Scott
,
M.
,
1989
, “
Practical Limits to the Performance of Magnetic Bearings: Peak Force, Slew Rate, and Displacement Sensitivity
,”
ASME J. Tribol.
,
111
(
2
), pp.
331
336
.
6.
Williams
,
R. D.
,
Keith
,
F. J.
, and
Allaire
,
P. E.
,
1990
, “
Digital Control of Active Magnetic Bearings
,”
IEEE Trans. Ind. Electron.
,
37
(
1
), pp.
19
27
.
7.
Knospe
,
C. R.
,
Hope
,
R. W.
, and
Fedigan
,
S. J.
,
1995
, “
Experiments in the Control of Unbalance Response Using Magnetic Bearings
,”
Mechatronics
,
5
(
4
), pp.
385
400
.
8.
Hu
,
T.
,
Lin
,
Z.
, and
Jiang
,
W.
,
2005
, “
Constrained Control Design for Magnetic Bearing Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
127
(
4
), pp.
601
616
.
9.
Yoon
,
S. Y.
,
Lin
,
Z.
, and
Goyne
,
C.
,
2010
, “
Control of Compressor Surge With Active Magnetic Bearings
,”
49th IEEE Conference on Decision and Control
, Atlanta, GA, Dec. 15–17, pp.
4323
4328
.
10.
Wang
,
W.
,
Gao
,
J.
, and
Zhang
,
Y.
,
2011
, “
Numerical and Experimental Investigation on the Controlling for Rotor-to-Stationary Part Rubbing in Rotating Machinery
,”
ASME
Paper No. GT2011-46250, pp.
425
434
.
11.
Dimond
,
T.
,
Allaire
,
P.
, and
Mushi
,
S.
,
2012
, “
Modal Tilt/Translate Control and Stability of a Rigid Rotor With Gyroscopics on Active Magnetic Bearings
,”
Int. J. Rotating Mach.
,
2012
, p.
567670
.
12.
Mushi
,
S. E.
,
Lin
,
Z.
, and
Allaire
,
P. E.
,
2012
, “
Design, Construction, and Modeling of a Flexible Rotor Active Magnetic Bearing Test Rig
,”
Mechatronics
,
17
(
6
), pp.
1170
1182
.
13.
Bently
,
D. E.
,
Grant
,
J. W.
, and
Hanifan
,
P. C.
,
2000
, “
Active Controlled Hydrostatic Bearings for a New Generation of Machines
,”
ASME
Paper No. 2000-GT-0354, pp.
1
9
.
14.
Bently
,
D. E.
,
Eldridge
,
T.
, and
Jensen
,
J.
,
2001
, “
Externally Pressurized Bearings Allow Rotor Dynamic Optimization
,”
VDI Berichte
,
1640
, pp.
49
62
.
15.
Santos
,
I.
, and
Watanabe
,
F. Y.
,
2003
, “
Feasibility of Influencing the Dynamic Fluid Film Coefficients of a Multirecess Journal Bearing by Means of Active Hybrid Lubrication
,”
J. Braz. Soc. Mech. Sci. Eng.
,
25
(
2
), pp.
154
163
.
16.
Santos
,
I. F.
,
Nicoletti
,
R.
, and
Scalabrin
,
A.
,
2004
, “
Feasibility of Applying Active Lubrication to Reduce Vibration in Industrial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
848
854
.
17.
Santos
,
I. F.
,
2011
, “
Trends in Controllable Oil Film Bearings
,”
IUTAM Symposium on Emerging Trends in Rotor Dynamics
, New Delhi, India, Mar. 23–26, pp.
185
199
.
18.
Jung
,
S. Y.
, and
Choi
,
S.
,
1995
, “
Analysis of a Short Squeeze-Film Damper Operating With Electrorheological Fluids
,”
Tribol. Trans.
,
38
(
4
), pp.
857
862
.
19.
Carmignani
,
C.
,
Forte
,
P.
, and
Rustighi
,
E.
,
2006
, “
Design of a Novel Magneto-Rheological Squeeze-Film Damper
,”
Smart Mater. Struct.
,
15
(
1
), pp.
164
–170.
20.
Kim
,
K.
,
Lee
,
C.
, and
Koo
,
J.
,
2008
, “
Design and Modeling of Semi-Active Squeeze Film Dampers Using Magneto-Rheological Fluids
,”
Smart Mater. Struct.
,
17
(
3
), p.
035006
.
21.
Goodwin
,
M.
,
Boroomand
,
T.
, and
Hooke
,
C.
,
1989
, “
Variable Impedance Hydrodynamic Journal Bearings for Controlling Flexible Rotor Vibrations
,”
Rotating Mach. Dyn.
,
18
(
1
), pp.
261
267
.
22.
Roach
,
M. P.
, and
Goodwin
,
M. J.
,
1992
, “
Vibration Control in Rotating Machinery by the Use of Accumulators or Aerated Lubricants
,”
International Conference on Rotating Machine Dynamics
, Venice, Italy, Apr. 28–30, pp.
367
375
.
23.
Deckler
,
D.
,
Veillette
,
R.
, and
Braun
,
M.
,
2004
, “
Simulation and Control of an Active Tilting-Pad Journal Bearing
,”
Tribol. Trans.
,
47
(
3
), pp.
440
458
.
24.
Sun
,
L.
, and
Krodkiewski
,
J.
,
2000
, “
Experimental Investigation of Dynamic Properties of an Active Journal Bearing
,”
J. Sound Vib.
,
230
(
5
), pp.
1103
1117
.
25.
Palazzolo
,
A.
,
Lin
,
R.
, and
Alexander
,
R.
,
1991
, “
Test and Theory for Piezoelectric Actuator-Active Vibration Control of Rotating Machinery
,”
ASME J. Vib. Acoust.
,
113
(
2
), pp.
167
175
.
26.
Palazzolo
,
A.
,
Jagannathan
,
S.
, and
Kascak
,
A.
,
1993
, “
Hybrid Active Vibration Control of Rotor Bearing Systems Using Piezoelectric Actuators
,”
ASME J. Vib. Acoust.
,
115
(
1
), pp.
111
119
.
27.
Osman
,
T.
,
Nada
,
G.
, and
Safar
,
Z.
,
2001
, “
Static and Dynamic Characteristics of Magnetized Journal Bearings Lubricated With Ferrofluid
,”
Tribol. Int.
,
34
(
6
), pp.
369
380
.
28.
Vance
,
J. M.
, and
Ying
,
D.
,
2000
, “
Experimental Measurements of Actively Controlled Bearing Damping With an Electrorheological Fluid
,”
ASME J. Eng. Gas Turbines Power
,
122
(
2
), pp.
337
344
.
29.
Zhu
,
C.
,
2005
, “
A Disk-Type Magneto-Rheological Fluid Damper for Rotor System Vibration Control
,”
J. Sound Vib.
,
283
(
3
), pp.
1051
1069
.
30.
Heshmat
,
H.
,
Chen
,
H. M.
, and
Walton
,
J.
,
2000
, “
On the Performance of Hybrid Foil-Magnetic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
73
81
.
31.
Swanson
,
E. E.
,
Heshmat
,
H.
, and
Walton
,
J.
,
2002
, “
Performance of a Foil-Magnetic Hybrid Bearing
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
375
382
.
32.
Clarens
,
A.
,
Younan
,
A.
, and
Wang
,
S.
,
2010
, “
Feasibility of Gas-Expanded Lubricants for Increased Energy Efficiency in Tilting-Pad Journal Bearings
,”
ASME J. Tribol.
,
132
(
3
), p.
031802
.
33.
Weaver
,
B. K.
,
Younan
,
A. A.
, and
Dimond
,
T. W.
,
2013
, “
Properties and Performance of Gas-Expanded Lubricants in Tilting Pad Journal Bearings
,”
Tribol. Trans.
,
56
(
4
), pp.
687
696
.
34.
Weaver
,
B. K.
,
Dimond
,
T. W.
, and
Kaplan
,
J. A.
,
2014
, “
Gas-Expanded Lubricant Performance and Effects on Rotor Stability in Turbomachinery
,”
ASME
Paper No. GT2014-26980, pp.
1
13
.
35.
Weaver
,
B. K.
,
Zhang
,
Y.
, and
Clarens
,
A. F.
,
2014
, “
Nonlinear Analysis of Rub Impact in a Three-Disk Rotor and Correction via Bearing and Lubricant Adjustment
,”
ASME
Paper No. IMECE201-40055.
36.
Badgley
,
R.
, and
Booker
,
J.
,
1969
, “
Turborotor Instability: Effect of Initial Transients on Plane Motion
,”
ASME J. Tribol.
,
91
(
4
), pp.
625
630
.
37.
Kirk
,
R.
, and
Gunter
,
E.
,
1974
, “
Transient Response of Rotor-Bearing Systems
,”
ASME J. Manuf. Sci. Eng.
,
96
(
2
), pp.
682
690
.
38.
Lund
,
J.
,
1976
, “
Linear Transient Response of a Flexible Rotor Supported in Gas-Lubricated Bearings
,”
ASME J. Tribol.
,
98
(
1
), pp.
57
65
.
39.
Adams
,
M.
,
1980
, “
Non-Linear Dynamics of Flexible Multi-Bearing Rotors
,”
J. Sound Vib.
,
71
(
1
), pp.
129
144
.
40.
Li
,
D.
,
Choy
,
K.
, and
Allaire
,
P.
,
1980
, “
Stability and Transient Characteristics of Four Multilobe Journal Bearing Configurations
,”
ASME J. Tribol.
,
102
(
3
), pp.
291
298
.
41.
Li
,
C.
,
1982
, “
Dynamics of Rotor Bearing Systems Supported by Floating Ring Bearings
,”
ASME J. Tribol.
,
104
(
4
), pp.
469
476
.
42.
Sakata
,
M.
,
Aiba
,
T.
, and
Ohnabe
,
H.
,
1983
, “
Transient Vibration of High-Speed, Lightweight Rotors Due to Sudden Imbalance
,”
ASME J. Eng. Gas Turbines Power
,
105
(
3
), pp.
480
486
.
43.
Choy
,
F.
, and
Padovan
,
J.
,
1987
, “
Non-Linear Transient Analysis of Rotor-Casing Rub Events
,”
J. Sound Vib.
,
113
(
3
), pp.
529
545
.
44.
Palazzolo
,
A.
,
Lin
,
R.
, and
Kascak
,
A.
,
1989
, “
Active Control of Transient Rotordynamic Vibration by Optimal Control Methods
,”
ASME J. Eng. Gas Turbines Power
,
111
(
2
), pp.
264
270
.
45.
Holl
,
H. J.
, and
Irschik
,
H.
,
1994
, “
A Substructure Method for the Transient Analysis of Nonlinear Rotordynamic Systems Using Modal Analysis
,” 12th International Modal Analysis Conference (
IMAC XII
), Honolulu, HI, Jan. 31–Feb. 3, pp.
1638
1638
.
46.
Gadangi
,
R.
,
Palazzolo
,
A.
, and
Kim
,
J.
,
1996
, “
Transient Analysis of Plain and Tilt Pad Journal Bearings Including Fluid Film Temperature Effects
,”
ASME J. Tribol.
,
118
(
2
), pp.
423
430
.
47.
Castro
,
H. F.
,
Cavalca
,
K. L.
, and
Nordmann
,
R.
,
2008
, “
Whirl and Whip Instabilities in Rotor-Bearing System Considering a Nonlinear Force Model
,”
J. Sound Vib.
,
317
(
1
), pp.
273
293
.
48.
Hauk
,
A.
,
2001
, “
Thermo- Und Fluiddynamik Von Synthetischen Schmierstoffen Mit Kohlendioxid Als Kaültemittel in PKW-Klimaanlagen [Thermo and Fluid Dynamics of Synthetic Lubricants With Carbon Dioxide as Refrigerant in Air Conditioning]
,” Ph.D. thesis, Ruhr University, Bochum, Germany.
49.
Grunberg
,
L.
, and
Nissan
,
A. H.
,
1949
, “
Mixture Law for Viscosity
,”
Nature
,
164
(
4175
), pp.
799
800
.
50.
Totten
,
G. E.
,
Westbrook
,
S. R.
, and
Shah
,
R. J.
,
2003
,
Fuels and Lubricants Handbook Technology, Properties, Performance, and Testing
,
ASTM International
,
West Conshokocken, PA
.
51.
Larsson
,
R.
, and
Andersson
,
O.
,
2000
, “
Lubricant Thermal Conductivity and Heat Capacity Under High Pressure
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
214
(
4
), pp.
337
342
.
52.
Jensen
,
M.
, and
Jackman
,
D.
,
1984
, “
Prediction of Nucleate Pool Boiling Heat-Transfer Coefficients of Refrigerant-Oil Mixtures
,”
ASME J. Heat Transfer
,
106
(
1
), pp.
184
190
.
53.
He
,
M.
,
2003
, “
Thermoelastohydrodynamic Analysis of Fluid Film Journal Bearings
,” Ph.D. thesis, University of Virginia, Charlottesville, VA.
54.
He
,
M.
, and
Allaire
,
P.
,
2002
, “
Thermoelastohydrodynamic Analysis of Journal Bearings With 2D Generalized Energy Equation
,”
6th International Conference on Rotor Dynamics
(IFTOMM), Sydney, Australia, Sept. 30–Oct. 3.
55.
He
,
M.
,
Allaire
,
P.
, and
Barrett
,
L.
,
2002
, “
TEHD Modeling of Leading Edge Groove Tilting Pad Bearings
,”
6th International Conference on Rotor Dynamics
(IFTOMM), Sydney, Australia, Sept. 30–Oct. 3.
56.
Ng
,
C.
, and
Pan
,
C.
,
1965
, “
A Linearized Turbulent Lubrication Theory
,”
J. Basic Eng.
,
87
(
3
), pp.
675
–688.
57.
Elrod
, Jr.,
H.
, and
Ng
,
C.
,
1967
, “
A Theory for Turbulent Fluid Films and its Application to Bearings
,”
J. Lubr. Technol.
,
89
(
3
), pp.
346
362
.
58.
Barrett
,
L. E.
,
1978
, “
Stability and Nonlinear Response of Rotor-Bearing Systems With Squeeze Film Bearings
,” Ph.D. thesis, University of Virginia, Charlottesville, VA.
59.
Nicholas
,
J.
,
Gunter
,
E.
, and
Barrett
,
L.
,
1978
, “
The Influence of Tilting Pad Bearing Characteristics on the Stability of High Speed Rotor-Bearing Systems
,”
Design Engineering Conference on Topics in Fluid Film Bearing and Rotor Bearing System Design and Optimization
, Chicago, Apr. 17–20, pp.
55
78
.
60.
API
,
2005
, “
API Standard Paragraphs Rotordynamic Tutorial: Lateral Critical Speeds, Unbalance Response, Stability, Train Torsionals, and Rotor Balancing
,”
2nd ed.
,
American Petroleum Institute
,
Washington, DC
, API Standard No. 684.
61.
Cao
,
J.
,
2012
, “
Transient Analysis of Flexible Rotors With Nonlinear Bearings, Dampers and External Forces
,” Ph.D. thesis, University of Virginia, Charlottesville, VA.
62.
API
,
2002
, “
Axial and Centrifugal Compressors and Expander-Compressors for Petroleum, Chemical, and Gas Industry Service, Downstream Service
,”
7th ed.
,
American Petroleum Institute
,
Washington, DC
, API Standard No. 617.
You do not currently have access to this content.