Gas-expanded lubricants (GELs) have the potential to increase bearing energy efficiency, long-term reliability, and provide for a degree of control over the rotordynamics of high-speed rotating machines. Previous work has shown that these tunable mixtures of synthetic oil and dissolved carbon dioxide could be used to maximize the stability margin of a machine during startup by controlling bearing stiffness and damping. This allows the user to then modify the fluid properties after reaching a steady operating speed to minimize bearing power loss and reduce operating temperatures. However, it is unknown how a typical machine would respond to rapid changes in bearing stiffness and damping due to changes in the fluid properties once the machine has completed startup. In this work, the time-transient behavior of a high-speed compressor was evaluated numerically to examine the effects of rapidly changing bearing dynamics on rotordynamic performance. Two cases were evaluated for an eight-stage centrifugal compressor: an assessment under stable operating conditions as well as a study of the instability threshold. These case studies presented two contrasting sets of transient operating conditions to evaluate, the first being critical to the viability of using GELs in high-speed rotating machinery. The fluid transitions studied for machine performance were between that of a polyol ester (POE) synthetic lubricant and a GEL with a 20% carbon dioxide content. The performance simulations were carried out using a steady-state thermoelastohydrodynamic (TEHD) bearing model, which provided bearing stiffness and damping coefficients as inputs to a time-transient rotordynamic model using Timoshenko beam finite elements. The displacements and velocities of each node were solved for using a fourth-order Runge–Kutta method and provided information on the response of the rotating machine due to rapid changes in bearing stiffness and damping coefficients. These changes were assumed to be rapid due to (1) the short lubricant residence times calculated for the bearings and (2) rapid mixing due to high shear rates in the machine bearings causing sudden changes in the fluid properties. This operating condition was also considered to be a worst-case scenario as an abrupt change in the bearing dynamics would likely solicit a more extreme rotordynamic response than a more gradual change, making this analysis quite important. The results of this study provide critical insight into the nature of operating a rotating machine and controlling its behavior using GELs, which will be vital to the implementation of this technology.
Skip Nav Destination
Article navigation
April 2016
Research-Article
Transient Analysis of Gas-Expanded Lubrication and Rotordynamic Performance in a Centrifugal Compressor
Brian K. Weaver,
Brian K. Weaver
Rotating Machinery and Controls Laboratory,
Department of Mechanical
and Aerospace Engineering,
University of Virginia,
122 Engineer's Way,
Charlottesville, VA 22904
e-mail: bkw3q@virginia.edu
Department of Mechanical
and Aerospace Engineering,
University of Virginia,
122 Engineer's Way,
Charlottesville, VA 22904
e-mail: bkw3q@virginia.edu
Search for other works by this author on:
Andres F. Clarens,
Andres F. Clarens
Rotating Machinery and Controls Laboratory,
Department of Civil
and Environmental Engineering,
University of Virginia,
351 McCormick Road,
Charlottesville, VA 22904
e-mail: aclarens@virginia.edu
Department of Civil
and Environmental Engineering,
University of Virginia,
351 McCormick Road,
Charlottesville, VA 22904
e-mail: aclarens@virginia.edu
Search for other works by this author on:
Alexandrina Untaroiu
Alexandrina Untaroiu
Laboratory for Turbomachinery
and Components,
Department of Biomedical Engineering
and Mechanics,
Virginia Tech,
324 Norris Hall,
495 Old Turner Street,
Blacksburg, VA 24061
e-mail: alexu@vt.edu
and Components,
Department of Biomedical Engineering
and Mechanics,
Virginia Tech,
324 Norris Hall,
495 Old Turner Street,
Blacksburg, VA 24061
e-mail: alexu@vt.edu
Search for other works by this author on:
Brian K. Weaver
Rotating Machinery and Controls Laboratory,
Department of Mechanical
and Aerospace Engineering,
University of Virginia,
122 Engineer's Way,
Charlottesville, VA 22904
e-mail: bkw3q@virginia.edu
Department of Mechanical
and Aerospace Engineering,
University of Virginia,
122 Engineer's Way,
Charlottesville, VA 22904
e-mail: bkw3q@virginia.edu
Jason A. Kaplan
Andres F. Clarens
Rotating Machinery and Controls Laboratory,
Department of Civil
and Environmental Engineering,
University of Virginia,
351 McCormick Road,
Charlottesville, VA 22904
e-mail: aclarens@virginia.edu
Department of Civil
and Environmental Engineering,
University of Virginia,
351 McCormick Road,
Charlottesville, VA 22904
e-mail: aclarens@virginia.edu
Alexandrina Untaroiu
Laboratory for Turbomachinery
and Components,
Department of Biomedical Engineering
and Mechanics,
Virginia Tech,
324 Norris Hall,
495 Old Turner Street,
Blacksburg, VA 24061
e-mail: alexu@vt.edu
and Components,
Department of Biomedical Engineering
and Mechanics,
Virginia Tech,
324 Norris Hall,
495 Old Turner Street,
Blacksburg, VA 24061
e-mail: alexu@vt.edu
Contributed by the Structures and Dynamics Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 12, 2015; final manuscript received August 30, 2015; published online October 21, 2015. Editor: David Wisler.
J. Eng. Gas Turbines Power. Apr 2016, 138(4): 042504 (8 pages)
Published Online: October 21, 2015
Article history
Received:
July 12, 2015
Revised:
August 30, 2015
Citation
Weaver, B. K., Kaplan, J. A., Clarens, A. F., and Untaroiu, A. (October 21, 2015). "Transient Analysis of Gas-Expanded Lubrication and Rotordynamic Performance in a Centrifugal Compressor." ASME. J. Eng. Gas Turbines Power. April 2016; 138(4): 042504. https://doi.org/10.1115/1.4031527
Download citation file:
Get Email Alerts
Cited By
Temperature Dependence of Aerated Turbine Lubricating Oil Degradation from a Lab-Scale Test Rig
J. Eng. Gas Turbines Power
Multi-Disciplinary Surrogate-Based Optimization of a Compressor Rotor Blade Considering Ice Impact
J. Eng. Gas Turbines Power
Experimental Investigations on Carbon Segmented Seals With Smooth and Pocketed Pads
J. Eng. Gas Turbines Power
Related Articles
Gas-Expanded Lubricant Performance and Effects on Rotor Stability in Turbomachinery
J. Eng. Gas Turbines Power (July,2015)
A Simplified Nonlinear Transient Analysis Method for Gas Bearings
J. Tribol (January,2012)
Feasibility of Applying Active Lubrication to Reduce Vibration in Industrial Compressors
J. Eng. Gas Turbines Power (October,2004)
Related Proceedings Papers
Related Chapters
Summary and Conclusions
Bearing Dynamic Coefficients in Rotordynamics: Computation Methods and Practical Applications
Unbalance
Fundamentals of Rotating Machinery Diagnostics
Research Tools
Bearing Dynamic Coefficients in Rotordynamics: Computation Methods and Practical Applications