Accurate post-stall airfoil data extending to a full range of incidences between −180 deg and +180 deg are important to the analysis of Darrieus vertical-axis wind turbines (VAWTs), since the blades experience a wide range of angles of attack, particularly at the low tip-speed ratios (TSRs) encountered during startup. Due to the scarcity of existing data extending much past stall and the difficulties associated with obtaining post-stall data by experimental or numerical means, wide use is made of simple models of post-stall lift and drag coefficients in wind turbine modeling (through, for example, blade element momentum (BEM) codes). Most of these models assume post-stall performance to be virtually independent of profile shape. In this study, wind tunnel tests were carried out on a standard NACA 0018 airfoil and a NACA 0018 conformally transformed to mimic the “virtual camber” effect imparted on a blade in a VAWT with a chord-to-radius ratio c/R of 0.25. Unsteady computational fluid dynamics (CFD) results were taken for the same airfoils both at stationary angles of attack and at angles of attack resulting from a slow VAWT-like motion in an oncoming flow, the latter to better replicate the transient conditions experienced by VAWT blades. Excellent agreement was obtained between the wind tunnel tests and the CFD computations for both the symmetrical and cambered airfoils. Results for both airfoils also compare favorably to earlier studies of similar profiles. Finally, the suitability of different models for post-stall airfoil performance extrapolation, including those of Viterna–Corrigan, Montgomerie, and Kirke, was analyzed and discussed.

References

References
1.
Paraschivoiu
,
I.
,
2002
,
Wind Turbine Design With Emphasis on Darrieus Concept
,
Polytechnic International Press
,
Montreal, QC, Canada
.
2.
Kirke
,
B. K.
,
1998
, “
Evaluation of Self-Starting Vertical Axis Wind Turbines for Standalone Applications
,” Ph.D. thesis, Griffith University, Gold Coast, Australia.
3.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
Blade Design Criteria to Compensate the Flow Curvature Effects in H-Darrieus Wind Turbines
,”
ASME J. Turbomach.
,
137
(
1
), p.
011006
.
4.
Marten
,
D.
,
Wendler
,
J.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2013
, “
Qblade: An Open Source Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines
,”
Int. J. Emerging Technol. Adv. Eng.
,
3
(
special issue 3
), pp.
264
269
.
5.
Carmichael
,
B. H.
,
1981
, “
Low Reynolds Number Airfoil Survey
,” Vol.
I
,
NASA Langley Research Center
,
Hampton, VA
, Report No.
NASA
CR 165803.
6.
Yarusevych
,
S.
,
Sullivan
,
P. E.
, and
Kawall
,
J. G.
,
2009
, “
On Vortex Shedding From an Airfoil in Low-Reynolds-Number Flows
,”
J. Fluid Mech.
,
632
, pp.
245
271
.
7.
Selig
,
M. S.
,
Guglielmo
,
J. J.
,
Broeren
,
A. P.
, and
Giguere
,
P.
,
1995
,
Summary of Low-Speed Airfoil Data
, Vol.
1
,
SoarTech Publications
,
Virginia Beach, VA
.
8.
Du
,
L.
,
Berson
,
A.
, and
Dominy
,
R. G.
,
2015
, “
NACA 0018 Behaviour at High Angles of Attack and at Reynolds Numbers Appropriate for Small Wind Turbines
,”
Proc. Inst. Mech. Eng., Part C
,
229
(
11
), pp.
2007
2022
.
9.
Bianchini
,
A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2011
, “
Start-Up Behavior of a Three-Bladed H-Darrieus VAWT: Experimental and Numerical Analysis
,”
ASME
Paper No. GT2011-45882.
10.
Bianchini
,
A.
,
Ferrari
,
L.
, and
Carnevale
,
E. A.
,
2011
, “
A Model to Account for the Virtual Camber Effect in the Performance Prediction of an H-Darrieus VAWT Using the Momentum Models
,”
Wind Eng.
,
35
(
4
), pp.
465
482
.
11.
Dominy
,
R.
,
Lunt
,
P.
,
Bickerdyke
,
A.
, and
Dominy
,
J.
,
2007
, “
Self-Starting Capability of a Darrieus Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
1
), pp.
111
120
.
12.
Sheldahl
,
R. E.
, and
Klimas
,
P. C.
,
1981
, “
Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. SAND80-2114.
13.
Rossetti
,
A.
, and
Pavesi
,
G.
,
2013
, “
Comparison of Different Numerical Approaches to the Study of the H-Darrieus Turbines Start-Up
,”
J. Renewable Energy
,
50
, pp.
7
19
.
14.
McGowan
,
R.
,
Raghav
,
V. S.
, and
Komerath
,
N. M.
,
2012
, “
Optimization of a Vertical Axis Micro Wind Turbine for Low Tip Speed Ratio Operation
,”
AIAA
Paper No. 2012-4244.
15.
Marten
,
D.
,
Wendler
,
J.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2013
, “
Development and Application of a Simulation Tool for Vertical and Horizontal Axis Wind Turbines
,”
ASME
Paper No. GT2013-94979.
16.
Rainbird
,
J.
,
2007
, “
The Aerodynamic Development of a Vertical Axis Wind Turbine
,” Master's thesis, University of Durham, Durham, UK.
17.
Drela
,
M.
, and
Youngren
,
H.
,
2001,
XFoil User Guide
,” accessed Oct. 2,
2014
, http://web.mit.edu/drela/Public/web/xfoil
18.
Viterna
,
L. A.
, and
Janetzke
,
D. C.
,
1982
, “
Theoretical and Experimental Power From Large Horizontal-Axis Wind Turbines
,” NASA Lewis Research Center, Cleveland, OH, NASA-TM-82944, Technical Report No. DOE/NASA/20320-41.
19.
Montgomerie
,
B.
,
2004
, “
Methods for Root Effects, Tip Effects and Extending the Angle of Attack Range to ±100 Deg, With Application to Aerodynamics for Blades on Wind Turbines and Propellers
,” FOI Swedish Defence Research Agency, Stockholm, Technical Report No. FOI-R-1035-SE.
20.
Rainbird
,
J. M.
,
Peiró
,
J.
, and
Graham
,
J. M. R.
,
2015
, “
Blockage-Tolerant Wind Tunnel Measurements for a NACA 0012 at High Angles of Attack
,”
J. Wind Eng. Ind. Aerodyn.
,
145
, pp.
209
218
.
21.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Rainbird
,
J.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines—Part I: Curvature Effects
,”
J. Eng. Gas Turbine Power
(submitted).
22.
Islam
,
M.
,
Ting
,
D.
, and
Fartaj
,
A.
,
2007
, “
Desirable Airfoil Features for Smaller-Capacity Straight-Bladed VAWT
,”
Wind Eng.
,
31
(
3
), pp.
165
196
.
23.
Bianchini
,
A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
Energy-Yield-Based Optimization of an H-Darrieus Wind Turbine
,”
ASME
Paper No. GT2012-69892.
24.
Migliore
,
P. G.
,
Wolfe
,
W. P.
, and
Fanucci
,
J. B.
,
1980
, “
Flow Curvature Effects on Darrieus Turbine Blade Aerodynamics
,”
J. Energy
,
4
(
2
), pp.
49
55
.
25.
Selig
,
M. S.
,
Deters
,
R. W.
, and
Williamson
,
G. A.
,
2011
, “
Wind Tunnel Testing Airfoils at Low Reynolds Numbers
,”
AIAA
Paper No. 2011-875.
26.
Rainbird
,
J. M.
,
Peiro
,
J.
, and
Graham
,
J. M.
,
2015
, “
Post-Stall Airfoil Performance and Vertical Axis Wind Turbines
,”
33rd Wind Energy Symposium
, Kissimmee, FL, Jan. 5–9.
27.
Engineering Sciences Data Unit
,
1978
, “
Lift-Interference and Blockage Corrections for Two-Dimensional Subsonic Flow in Ventilated and Closed Wind-Tunnels
,” IHS ESDU, Denver, CO, Technical Report No. ESDU 76028.
28.
Timmer
,
W. A.
,
2008
, “
Two-Dimensional Low-Reynolds Number Wind Tunnel Results for Airfoil NACA 0018
,”
Wind Eng.
,
32
(
6
), pp.
525
537
.
29.
Ostowari
,
C.
, and
Naik
,
D.
,
1985
, “
Post-Stall Wind Tunnel Data for NACA 44XX Series Airfoil Sections
,” National Renewable Energy Laboratory,
Solar Energy Research Institute
, Golden, CO, Technical Report No. SERI/STR-217-2559.
30.
Cox
,
J. A.
,
Brentner
,
K. S.
, and
Rumsey
,
C. L.
,
1998
, “
Computation of Vortex Shedding and Radiated Sound for a Circular Cylinder: Subcritical to Transcritical Reynolds Numbers
,”
Theor. Comput. Fluid Dyn.
,
12
(4), pp.
233
253
.
31.
Marten
,
D.
, and
Wendler
,
J.
,
2013
, “
QBlade Guidelines
,”
Ver. 0.6
, Technical University of (TU Berlin), Berlin, Germany.
32.
Beans
,
E. W.
, and
Jakubowski
,
G. S.
,
1983
, “
Method of Estimating the Aerodynamic Coefficients of Wind Turbine Blades at High Angles of Attack
,”
J. Energy
,
7
(
6
), pp.
747
749
.
33.
Spera
,
D.
,
2008
, “
Models of Lift and Drag Coefficients of Stalled and Unstalled Airfoils in Wind Turbines and Wind Tunnels
,” NASA Glenn Research Center, Cleveland, OH, Technical Report No.
NASA
/CR-2008-215434.
You do not currently have access to this content.