Sealing air is used in gas turbines to reduce the amount of hot gas that is ingested through the rim seals into the wheel-space between the turbine disk and its adjacent stationary casing. The sealing air attaches itself to the rotor, creating a buffering effect that reduces the amount of ingested fluid that can reach the surface of the rotor. In this paper, a theoretical model is developed, and this shows that the maximum buffering effect occurs at a critical flow rate of sealing air, the value of which depends on the seal geometry. The model, which requires two empirical constants, is validated using experimental data, obtained from infrared (IR) temperature measurements, which are presented in a separate paper. There is good agreement between the adiabatic effectiveness of the rotor estimated from the model and that obtained from the IR measurements. Of particular interest to designers is that significant ingress can enter the wheel-space before its effect is sensed by the rotor.

References

1.
Cho
,
G.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2015
, “
Effect of Ingress on Turbine Discs
,”
ASME
Paper No. GT2015-42324.
2.
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2012
, “
Effect of Ingress on Temperature of Turbine Disks
,”
ASME J. Turbomach.
,
135
(
5
), p.
051010
.
3.
Scobie
,
J.
,
Teuber
,
R.
,
Li
,
Y. S.
,
Sangan
,
C. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2015
, “
Design of an Improved Turbine Seal
,”
ASME
Paper No. GT2015-42327.
4.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
.
5.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.
6.
Owen
,
J. M.
,
Zhou
,
K.
,
Pountney
,
O. J.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2012
, “
Prediction of Ingress Through Turbine Rim Seals—Part I: Externally-Induced Ingress
,”
ASME J. Turbomach.
,
134
(
3
), p.
031012
.
7.
Owen
,
J. M.
,
Pountney
,
O. J.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2012
, “
Prediction of Ingress Through Turbine Rim Seals—Part II: Combined Ingress
,”
ASME J. Turbomach.
,
134
(
3
), p.
031013
.
8.
Chew
,
J. W.
,
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Rim Sealing of Rotor–Stator Wheelspaces in the Presence of External Flow
,”
ASME
Paper No. 94-GT-126.
9.
Tian
,
S.
,
Zhang
,
Y.
, and
Su
,
W.
,
2014
, “
Effects of Gas-Ingestion Through Turbine Rim Seals on Flow and Heat Transfer in the Wheel-Space
,”
ASME
Paper No. GT2014-26635.
10.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1989
,
Flow and Heat Transfer in Rotating Disk Systems, Rotor–Stator Systems
,
Vol. I,
Research Studies Press
,
Taunton, UK
.
11.
Childs
,
P. R. N.
,
2010
,
Rotating Flow
,
Butterworth-Heinemann
,
Oxford, UK
.
12.
Mear
,
L. I.
,
2015
, “
Theoretical Modelling of Flow in Rotor–Stator Systems
,” Ph.D. thesis, University of Bath, Bath, UK.
13.
Zhou
,
K.
,
Wood
,
S. N.
, and
Owen
,
J. M.
,
2013
, “
Statistical and Theoretical Models of Ingestion Through Turbine Rim Seals
,”
ASME J. Turbomach.
,
135
(
2
), p.
021014
.
14.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part III: Single and Double Seals
,”
ASME J. Turbomach.
,
135
(
5
), p.
051011
.
You do not currently have access to this content.