Abstract

Understanding the mechanisms and physics of flame stabilization and blowoff of premixed flames is critical toward the design of high velocity combustion devices. In the high bulk flow velocity situation typical of practical combustors, the flame anchors in shear layers where the local flow velocities are much lower. Within the shear layer, fluid strain deformation rates are very high and the flame can be subjected to significant stretch levels. The main goal of this work was to characterize the flow and stretch conditions that a premixed flame experiences in a practical combustor geometry and to compare these values to calculated extinction values. High resolution, simultaneous particle image velocimetry (PIV) and planar laser induced fluorescence of CH radicals (CH-PLIF) measurements are used to capture the flame edge and near-field stabilization region. When approaching lean limit extinction conditions, we note characteristic changes in the stretch and flow conditions experienced by the flame. Most notably, the flame becomes less critically stretched when fuel/air ratio is decreased. However, at these lean conditions, the flame is subject to higher mean flow velocities at the edge, suggesting less favorable flow conditions are present at the attachment point of the flame as blowoff is approached. These measurements suggest that blowoff of the flame from the shear layer is not directly stretch extinction induced, but rather the result of an imbalance between the speed of the flame edge and local tangential flow velocity.

References

1.
Lefebvre
,
A. H.
,
1999
,
Gas Turbine Combustion
, 2nd ed.,
Taylor & Francis
,
New York
.
2.
Vandervort
,
C.
,
2001
, “
9 ppm NOx/CO Combustion System for F Class Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
317
321
.
3.
Radhakrishnan
,
K.
,
Heywood
,
J. B.
, and
Tabaczynski
,
R. J.
,
1981
, “
Premixed Turbulent Flame Blowoff Velocity Correlation Based on Coherent Structures in Turbulent Flows
,”
Combust. Flame
,
42
, pp.
19
33
.
4.
Korusoy
,
E.
, and
Whitelaw
,
J.
,
2001
, “
Opposed Jets With Small Separations and Their Implications for the Extinction of Opposed Flames
,”
Exp. Fluids
,
31
(
1
), pp.
111
117
.
5.
Lacarelle
,
A.
,
Faustmann
,
T.
,
Greenblatt
,
D.
,
Paschereit
,
C. O.
,
Lehmann
,
O.
,
Luchtenburg
,
D. M.
, and
Noack
,
B. R.
,
2009
, “
Spatiotemporal Characterization of a Conical Swirler Flow Field Under Strong Forcing
,”
ASME J. Eng. Gas Turbines Power
,
131
(3), p.
031504
.
6.
Chterev
,
I.
,
Foley
,
C. W.
,
Foti
,
D.
,
Kostka
,
S.
,
Caswell
,
A. W.
,
Jiang
,
N.
,
Lynch
,
A.
,
Noble
,
D. R.
,
Menon
,
S.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2014
, “
Flame and Flow Topologies in an Annular Swirling Flow
,”
Combust. Sci. Technol.
,
186
(
8
), pp.
1041
1074
.
7.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
11506
.
8.
Buckmaster
,
J.
,
2002
, “
Edge-Flames
,”
Progress Energy Combust. Sci.
,
28
(
5
), pp.
435
475
.
9.
Paschereit
,
C. O.
,
Gutmark
,
E.
, and
Weisenstein
,
W.
,
2000
, “
Excitation of Thermoacoustic Instabilities by Interaction of Acoustics and Unstable Swirling Flow
,”
AIAA J.
,
38
(
6
), pp.
1025
1034
.
10.
Daou
,
R.
,
Daou
,
J.
, and
Dold
,
J.
,
2003
, “
Effect of Heat-Loss on Flame-Edges in a Premixed Counterflow
,”
Combust. Theory Modell.
,
7
(
2
), pp.
221
242
.
11.
Daou
,
J.
, and
Linán
,
A.
,
1999
, “
Ignition and Extinction Fronts in Counterflowing Premixed Reactive Gases
,”
Combust. Flame
,
118
(
3
), pp.
479
488
.
12.
Amantini
,
G.
,
Frank
,
J. H.
, and
Gomez
,
A.
,
2005
, “
Experiments on Standing and Traveling Edge Flames Around Flame Holes
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
313
321
.
13.
Law
,
C.
, and
Sung
,
C.
,
2000
, “
Structure, Aerodynamics, and Geometry of Premixed Flamelets
,”
Prog. Energy Combust. Sci.
,
26
(
4
), pp.
459
505
.
14.
Law
,
C. K.
,
2006
,
Combustion Physics
,
Cambridge University Press
,
New York
.
15.
Aggarwal
,
S. K.
,
2009
, “
Extinction of Laminar Partially Premixed Flames
,”
Prog. Energy Combust. Sci.
,
35
(
6
), pp.
528
570
.
16.
Thumuluru
,
S. K.
,
Bobba
,
M. K.
, and
Lieuwen
,
T.
, “
Mechanism of the Nonlinear Response of a Swirl Flame to Harmonic Excitation
,”
ASME
Paper No. GT2007-27932.
17.
Zhang
,
Q.
,
Shanbhogue
,
S. J.
,
Shreekrishna
, and
Lieuwen
,
T.
,
2011
, “
Strain Characteristics Near the Flame Attachment Point in a Swirling Flow
,”
Combust. Sci. Technol.
,
183
(
7
), pp.
665
685
.
18.
Shanbhogue
,
S. J.
,
Husain
,
S.
, and
Lieuwen
,
T.
,
2009
, “
Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
98
120
.
19.
Loiseleux
,
T.
,
Chomaz
,
J.
, and
Huerre
,
P.
,
1998
, “
The Effect of Swirl on Jets and Wakes: Linear Instability of the Rankine Vortex With Axial Flow
,”
Phys. Fluids
,
10
(
5
), pp.
1120
1134
.
20.
Bellows
,
B.
,
Bobba
,
M. K.
,
Forte
,
A.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T.
,
2007
, “
Flame Transfer Function Saturation Mechanisms in a Swirl-Stabilized Combustor
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3181
3188
.
21.
Thumuluru
,
S. K.
, and
Lieuwen
,
T.
,
2009
, “
Characterization of Acoustically Forced Swirl Flame Dynamics
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2893
2900
.
22.
Emara
,
A.
,
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2009
, “
Planar Investigation of Outlet Boundary Conditions Effect on Isothermal Flow Fields of a Swirl-Stabilized Burner
,”
ASME
Paper No. GT2009-59948.
23.
Periagaram
,
K. B.
,
2012
, “
Determination of Flame Characteristics in a Low Swirl Burner at Gas Turbine Conditions Through Reaction Zone Imaging
,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA.
24.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
, and
Gardiner
,
W. C.
, Jr.,
1999
, “
GRI-Mech 3.0
,” Gas Research Institute, Chicago, IL, http://www.me.berkeley.edu/gri_mech
25.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
,
New York
, p.
405
.
26.
Filatyev
,
S. A.
,
Driscoll
,
J. F.
,
Carter
,
C. D.
, and
Donbar
,
J. M.
,
2005
, “
Measured Properties of Turbulent Premixed Flames for Model Assessment, Including Burning Velocities, Stretch Rates, and Surface Densities
,”
Combust. Flame
,
141
(
1
), pp.
1
21
.
27.
Santoro
,
V. S.
,
Liñán
,
A.
, and
Gomez
,
A.
,
2000
, “
Propagation of Edge Flames in Counterflow Mixing Layers: Experiments and Theory
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
2039
2046
.
28.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
Berlin
.
29.
Sung
,
C.
,
Law
,
C.
, and
Axelbaum
,
R. L.
,
1994
, “
Thermophoretic Effects on Seeding Particles in LDV Measurements of Flames
,”
Combust. Sci. Technol.
,
99
(
1–3
), pp.
119
132
.
You do not currently have access to this content.