Over the last ten years, there have been significant technological advances toward the reduction of NOx emissions from civil aircraft engines, strongly aimed at meeting stricter and stricter legislation requirements. Nowadays, the most prominent way to meet the target of reducing NOx emissions in modern combustors is represented by lean burn swirl stabilized technology. The high amount of air admitted through a lean burn injection system is characterized by very complex flow structures such as recirculations, vortex breakdown, and precessing vortex core (PVC) that may deeply interact in the near wall region of the combustor liner. This interaction makes challenging the estimation of film cooling distribution, commonly generated by slot and effusion systems. The main purpose of the present work is the characterization of the flow field and the adiabatic effectiveness due to the interaction of swirling flow, generated by real geometry injectors, and a liner cooling scheme made up of a slot injection and an effusion array. The experimental apparatus has been developed within EU project LEMCOTEC (low emissions core-engine technologies) and consists of a nonreactive three-sectors planar rig; the test model is characterized by a complete cooling system and three swirlers, replicating the geometry of a GE Avio PERM (partially evaporated and rapid mixing) injector technology. Flow field measurements have been performed by means of a standard 2D PIV (particle image velocimetry) technique, while adiabatic effectiveness maps have been obtained using PSP (pressure sensitive paint) technique. PIV results show the effect of coolant injection in the corner vortex region, while the PSP measurements highlight the impact of swirled flow on the liner film protection separating the contribution of slot and effusion flows. Furthermore, an additional analysis, exploiting experimental results in terms of heat transfer coefficient, has been performed to estimate the net heat flux reduction (NHFR) on the cooled test plate.

References

References
1.
Schulz
,
A.
,
2001
, “
Combustor Liner Cooling Technology in Scope of Reduced Pollutant Formation and Rising Thermal Efficiencies
,”
Ann. N. Y. Acad. Sci.
,
934
, pp.
135
146
.
2.
Lefebvre
,
A. H.
,
1998
,
Gas Turbine Combustion
,
Taylor & Francis
,
Philadelphia
.
3.
Lilley
,
D. G.
,
1977
, “
Swirl Flows in Combustion: A Review
,”
AIAA J.
,
15
(
8
), pp.
1063
1078
.
4.
Rhode
,
D. L.
,
Lilley
,
D. G.
, and
McLaughlin
,
D. K.
,
1983
, “
Mean Flowfields in Axisymmetric Combustor Geometries With Swirl
,”
AIAA J.
,
21
(
4
), pp.
593
600
.
5.
Brum
,
R. D.
, and
Samuelsen
,
G. S.
,
1987
, “
Two-Component Laser Anemometry Measurements of Non-Reacting and Reacting Complex Flows in a Swirl-Stabilized Model Combustor
,”
Exp. Fluids
,
5
(
2
), pp.
95
102
.
6.
Spencer
,
A.
,
Hollis
,
D.
, and
Gashi
,
S.
,
2008
, “
Investigation of the Unsteady Aerodynamics of an Annular Combustor Using PIV and LES
,”
ASME
Paper No. GT2008-50277.
7.
Gnirss
,
M.
, and
Tropea
,
C.
,
2008
, “
Simultaneous PIV and Concentration Measurements in a Gas-Turbine Model
,”
Exp Fluids
,
45
(
4
), pp.
643
656
.
8.
Patil
,
S.
,
Sedalor
,
T.
,
Tafti
,
D.
,
Ekkad
,
S.
,
Kim
,
Y.
,
Dutta
,
P.
,
Moon
,
H. K.
, and
Srinivasan
,
R.
,
2011
, “
Study of Flow and Convective Heat Transfer in a Simulated Scaled up Low Emission Annular Combustor
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
3
), p.
031010
.
9.
Andreini
,
A.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Turrini
,
F.
,
2014
, “
Experimental Investigation of the Flow Field and the Heat Transfer on a Scaled Cooled Combustor Liner With Realistic Swirling Flow Generated by a Lean-Burn Injection System
,”
ASME J. Turbomach.
,
137
(
3
), p.
031012
.
10.
Andreini
,
A.
,
Facchini
,
B.
,
Mazzei
,
L.
, and
Turrini
,
F.
,
2015
, “
Impact of Swirl Flow on Combustor Liner Heat Transfer and Cooling—A Numerical Investigation With Hybrid RANS–LES Models
,”
ASME
Paper No. GT2015-42403.
11.
Sasaki
,
M.
,
Takahara
,
K.
,
Kumagai
,
T.
, and
Hamano
,
M.
,
1979
, “
Film Cooling Effectiveness for Injection From Multirow Holes
,”
ASME J. Eng. Power
,
101
(
1
), pp.
101
108
.
12.
Andrews
,
G. E.
,
Asere
,
A. A.
,
Gupta
,
M. L.
, and
Mkpadi
,
M. C.
,
1990
, “
Effusion Cooling: The Influence of Number of Hole
,”
Proc. Inst. Mech. Eng., Part A
,
204
(
3
), pp.
175
182
.
13.
Andrews
,
G. E.
,
Bazdidi-Tehrani
,
F.
,
Hussain
,
C. I.
, and
Pearson
,
J. P.
,
1991
, “
Small Diameter Film Cooling Hole Heat Transfer: The Influence of Hole Length
,”
ASME
Paper No. 91-GT-344.
14.
Wurm
,
B.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2009
, “
A New Test Facility for Investigating the Interaction Between Swirl Flow and Wall Cooling Films in Combustors
,”
ASME
Paper No. GT2009-59961.
15.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Gerendas
,
M.
,
2012
, “
Impact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
121503
.
16.
Marinov
,
S.
,
Kern
,
M.
,
Merkle
,
K.
,
Zarzalis
,
N.
,
Peschiulli
,
A.
, and
Turrini
,
F.
,
2010
, “
On Swirl Stabilized Flame Characteristics Near the Weak Extinction Limit
,”
ASME
Paper No. GT2010-22335.
17.
Andrews
,
G. E.
,
Ahmed
,
N. T.
,
Phylaktou
,
R.
, and
King
,
P.
,
2009
, “
Weak Extinction in Low NOx Gas Turbine Combustion
,”
ASME
Paper No. GT2009-59830.
18.
Raffel
,
M.
,
Willert
,
C. E.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry—A Practical Guide
,
2nd ed.
,
Springer
,
Berlin
.
19.
Charonko
,
J. J.
, and
Vlachos
,
P. P.
,
2013
, “
Estimation of Uncertainty Bounds for Individual Particle Image Velocimetry Measurements From Cross-Correlation Peak Ratio
,”
Meas. Sci. Technol.
,
24
(
6
), p.
065301
.
20.
Han
,
J.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
2nd ed.
,
Taylor & Francis
,
New York
.
21.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J.-C.
,
2005
, “
Assessment of Steady State PSP, TSP, and IR Measurement Techniques for Flat Plate Film Cooling
,”
ASME
Paper No. HT2005-72363.
22.
Caciolli
,
G.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Tarchi
,
L.
,
2013
, “
Comparison Between PSP and TLC Steady State Techniques for Adiabatic Effectiveness Measurement on a Multiperforated Plate
,”
Exp. Therm. Fluid Sci.
,
48
, pp.
122
133
.
23.
Jones
,
T. V.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
349
354
.
24.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
25.
Andreini
,
A.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Bellocci
,
L.
, and
Turrini
,
F.
,
2014
, “
Assessment of Aero-Thermal Design Methodology for Effusion Cooled Lean Burn Annular Combustors
,”
ASME
Paper No. GT2014-26764.
26.
Andreini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Colantuoni
,
S.
, and
Turrini
,
F.
,
2013
, “
Local Source Based CFD Modeling of Effusion Cooling Holes: Validation and Application to an Actual Combustor Test Case
,”
ASME
Paper No. GT2013-94874.
27.
Andreini
,
A.
,
Caciolli
,
G.
,
Facchini
,
B.
, and
Tarchi
,
L.
,
2013
, “
Experimental Evaluation of the Density Ratio Effects on the Cooling Performance of a Combined Slot/Effusion Combustor Cooling System
,”
ISRN Aerosp. Eng.
,
2013
, pp.
1
14
.
28.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
(
4
), pp.
800
806
.
29.
Andreini
,
A.
,
Becchi
,
R.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Turrini
,
F.
,
2015
, “
Effect of Slot Injection and Effusion Array on the Liner Heat Transfer Coefficient of a Scaled Lean Burn Combustor With Representative Swirling Flow
,”
ASME
Paper No. GT2015-42587.
You do not currently have access to this content.