An innovative design of a gas turbine annular combustor is investigated analytically and numerically. Its principal feature is the helical arrangement of the burners around the turbine shaft. Hence, a shorter combustor with lower aerodynamic losses and cooling air demand might be realized. A generic model of the combustor is developed and analyzed by means of a parametric study. Scaling laws for the geometry of the flame tube and the burners are derived. Thereby, the relevant similarity parameters for fluid flow, combustion, and heat transfer are maintained constant. Subsequently, nonreacting and reacting flow regimes of selected design variants are numerically investigated. It is shown that a double annular (DA) configuration with a tilting angle of β = 45 deg, where circumferentially adjacent swirls are corotating and radially are counter-rotating, is the superior design in terms of (1) maintaining the relevant similarity rules, (2) size and location of the recirculation zones and swirl flames, and (3) flow pattern at the combustor exit. The deflection angle of the nozzle guide vanes (NGV) as well as the axial length of such a short helical combustor (SHC) could be reduced by approximately 30%.

References

References
1.
Farokhi
,
S.
,
2014
,
Aircraft Propulsion
,
Wiley
,
West Sussex, UK
.
2.
Claude
,
S.
,
1943
, “
Gas Turbine Plant
,” U.S. Patent No. 2,326,072.
3.
Hall
,
R.
,
1961
, “
Spiral Annular Combustion Chamber
,” U.S. Patent No. 3,000,183.
4.
Schutz
,
H.
,
Kraupa
,
W.
, and
Termuhlen
,
H.
,
1999
, “
Gas Turbine Engine With Tilted Burners
,” U.S. Patent No. 5,946,902.
5.
Burd
,
S.
, and
Cheung
,
A.
,
2007
, “
Angled Flow Annular Combustor for Turbine Engine
,” WO Patent Application PCT/US2006/007,898.
6.
Mancini
,
A.
,
Burrus
,
D.
, and
Lohmueller
,
S.
,
2007
, “
Method and Apparatus for Assembling Gas Turbine Engine
,” EP Patent application EP20,070,103,306.
7.
Buret
,
M.
,
Cazalens
,
M.
, and
Hernandez
,
D.
,
2009
, “
Turbomachine With Angular Air Delivery
,” U.S. Patent No. 7,549,294.
8.
Negulescu
,
D.
,
2013
, “
Gas Turbine Combustion Chamber Arrangement of Axial Type of Construction
,” U.S. Patent Application 13/704,972.
9.
Negulescu
,
D.
,
2014
, “
Gas Turbine Centripetal Annular Combustion Chamber and Method for Flow Guidance
,” U.S. Patent Application 14/232,814.
10.
Stöhr
,
M.
,
Boxx
,
I.
,
Carter
,
C.
, and
Meier
,
W.
,
2011
, “
Dynamics of Lean Blowout of a Swirl-Stabilized Flame in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2953
2960
.
11.
Sigfrid
, I
. R.
,
Whiddon
,
R.
,
Collin
,
R.
, and
Klingmann
,
J.
,
2014
, “
Influence of Reactive Species on the Lean Blowout Limit of an Industrial DLE Gas Turbine Burner
,”
Combust. Flame
,
161
(
5
), pp.
1365
1373
.
12.
Wünning
,
J.
, and
Wünning
,
J.
,
1997
, “
Flameless Oxidation to Reduce Thermal No-Formation
,”
Prog. Energy Combust. Sci.
,
23
(
1
), pp.
81
94
.
13.
Williams
,
F.
,
1985
, Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems (Combustion Science and Engineering Series),
Perseus Books Group
,
Menlo Park, CA
.
14.
Spalding
,
D.
,
Hottel
,
H.
,
Bragg
,
S.
,
Lefebvre
,
A.
,
Shepherd
,
D.
, and
Scurlock
,
A.
,
1963
, “
The Art of Partial Modeling
,”
Symp. (Int.) Combust.
,
9
(
1
), pp.
833
843
.
15.
Beér
,
J.
, and
Chigier
,
N.
,
1972
, Combustion Aerodynamics (Fuel and Energy Science Series),
Krieger Publishing
,
Malabar, FL
, Chap. 7.
16.
Gupta
,
A.
, and
Lilley
,
D.
,
1985
, Flowfield Modeling and Diagnostics (Energy and Engineering Science Series),
Abacus Press
,
Tunbridge Wells, UK
, Chap. 3.
17.
Weber
,
R.
,
1996
, “
Scaling Characteristics of Aerodynamics, Heat Transfer, and Pollutant Emissions in Industrial Flames
,”
Symp. (Int.) Combust.
,
26
(
2
), pp.
3343
3354
.
18.
Poinsot
,
T.
, and
Veynante
,
D.
,
2012
,
Theoretical and Numerical Combustion
, 3rd ed., Aquaprint, Bordeaux, France.
19.
Damköhler
,
G.
,
1936
, “
Einflüsse der strömung, diffusion und des wärmeüberganges auf die leistung von reaktionsöfen.: I. allgemeine gesichtspunkte für die übertragung eines chemischen prozesses aus dem kleinen ins grosse
,”
Z. Elektrochem. Angew. Phys. Chem.
,
42
(
12
), pp.
846
862
.
20.
Peters
,
N.
,
2000
, Turbulent Combustion (Cambridge Monographs on Mechanics),
Cambridge University
,
Cambridge, UK
.
21.
Driscoll
,
J. F.
,
Chen
,
R.-H.
, and
Yoon
,
Y.
,
1992
, “
Nitric Oxide Levels of Turbulent Jet Diffusion Flames: Effects of Residence Time and Damkohler Number
,”
Combust. Flame
,
88
(
1
), pp.
37
49
.
22.
Peters
,
N.
, and
Donnerhack
,
S.
,
1981
, “
Structure and Similarity of Nitric Oxide Production in Turbulent Diffusion Flames
,”
Symp. (Int.) Combust.
,
18
(
1
), pp.
33
42
.
23.
Hsieh
,
T.-C.
,
Dahm
,
W. J.
, and
Driscoll
,
J. F.
,
1998
, “
Scaling Laws for {NOx} Emission Performance of Burners and Furnaces From 30 kW to 12 {MW}
,”
Combust. Flame
,
114
(
1–2
), pp.
54
80
.
24.
Smart
,
J.
,
Morgan
,
D.
, and
Roberts
,
P.
,
1992
, “
The Effect of Scale on the Performance of Swirl Stabilised Pulverised Coal Burners
,”
Symp. (Int.) Combust.
,
24
(
1
), pp.
1365
1372
.
25.
Weber
,
R.
, and
Breussin
,
F.
,
1998
, “
Scaling Properties of Swirling Pulverized Coal Flames: From 180 kW to 50 {MW} Thermal Input
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
2957
2964
.
26.
Yakhot
,
V.
, and
Smith
,
L. M.
,
1992
, “
The Renormalization Group, the Expansion and Derivation of Turbulence Models
,”
J. Sci. Comput.
,
7
(
1
), pp.
35
61
.
27.
Bärow
,
E.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2013
, “
Comparison of Oscillation Modes of Spray and Gaseous Flames
,”
Eighth Mediterranean Combustion Symposium
, Çeşme, İzmir, Turkey, Sept. 8–13.
28.
Gepperth
,
S.
,
Bärow
,
E.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2014
, “
Primary Atomization of Prefilming Airblast Nozzles: Experimental Studies Using Advanced Image Processing Techniques
,”
26th Annual Conference on Liquid Atomization and Spray Systems
(ILASS Europe), Bremen, Germany, Sept. 8–10.
29.
Schmid
,
H.-P.
,
Habisreuther
,
P.
, and
Leuckel
,
W.
,
1998
, “
A Model for Calculating Heat Release in Premixed Turbulent Flames
,”
Combust. Flame
,
113
(
1–2
), pp.
79
91
.
30.
Kolmogorov
,
A.
,
Petrovskii
,
I.
, and
Piskunov
,
N.
,
1937
, “
A Study of the Equation of Diffusion With Increase in the Quantity of Matter, and Its Application to a Biological Problem
,”
Byul. Mosk. Gos. Univ.
,
1
(
7
), pp.
1
26
.
31.
Zhang
,
F.
,
Habisreuther
,
P.
,
Hettel
,
M.
, and
Bockhorn
,
H.
,
2009
, “
Modelling of a Premixed Swirl-Stabilized Flame Using a Turbulent Flame Speed Closure Model in LES
,”
Flow, Turbul. Combust.
,
82
(
4
), pp.
537
551
.
32.
Zhang
,
F.
,
Habisreuther
,
P.
, and
Bockhorn
,
H.
,
2013
, “
Application of the Unified Turbulent Flame-Speed Closure (UTFC) Combustion Model to Numerical Computation of Turbulent Gas Flames
,”
High Performance Computing in Science and Engineering
,
Springer
,
Berlin
, pp.
187
205
.
You do not currently have access to this content.