This paper reports new measurements and analysis made in the Research Cell 19 supersonic wind-tunnel facility housed at the Air Force Research Laboratory. The measurements include planar chemiluminescence from multiple angular positions obtained using fiber-based endoscopes (FBEs) and the accompanying velocity fields obtained using particle image velocimetry (PIV). The measurements capture the flame dynamics from different angles (e.g., the top and both sides) simultaneously. The analysis of such data by proper orthogonal decomposition (POD) will also be reported. Nonintrusive and full-field imaging measurements provide a wealth of information for model validation and design optimization of propulsion systems. However, it is challenging to obtain such measurements due to various implementation difficulties such as optical access, thermal management, and equipment cost. This work therefore explores the application of the FBEs for nonintrusive imaging measurements in the supersonic propulsion systems. The FBEs used in this work are demonstrated to overcome many of the practical difficulties and significantly facilitate the measurements. The FBEs are bendable and have relatively small footprints (compared to high-speed cameras), which facilitates line-of-sight optical access. Also, the FBEs can tolerate higher temperatures than high-speed cameras, ameliorating the thermal management issues. Finally, the FBEs, after customization, can enable the capture of multiple images (e.g., images of the flow fields at multi-angles) onto the same camera chip, greatly reducing the equipment cost of the measurements. The multi-angle data sets, enabled by the FBEs as discussed above, were analyzed by POD to extract the dominating flame modes when examined from various angular positions. Similar analysis was performed on the accompanying PIV data to examine the corresponding modes of the flow fields. The POD analysis provides a quantitative measure of the dominating spatial modes of the flame and flow structures, and is an effective mathematical tool to extract key physics from large data sets as the high-speed measurements collected in this study. However, the past POD analysis has been limited to data obtained from one orientation only. The availability of data at multiple angles in this study is expected to provide further insights into the flame and flow structures in high-speed propulsion systems.
Skip Nav Destination
Article navigation
February 2016
Research-Article
Multi-angular Flame Measurements and Analysis in a Supersonic Wind Tunnel Using Fiber-Based Endoscopes
Lin Ma,
Lin Ma
Department of Aerospace and
Ocean Engineering,
Virginia Tech,
Blacksburg, VA 24061;
Ocean Engineering,
Virginia Tech,
Blacksburg, VA 24061;
Search for other works by this author on:
Andrew J. Wickersham,
Andrew J. Wickersham
Department of Mechanical Engineering,
Virginia Tech,
Blacksburg, VA 24061
e-mail: ajwickersham@gmail.com
Virginia Tech,
Blacksburg, VA 24061
e-mail: ajwickersham@gmail.com
Search for other works by this author on:
Campbell D. Carter
Campbell D. Carter
Search for other works by this author on:
Lin Ma
Department of Aerospace and
Ocean Engineering,
Virginia Tech,
Blacksburg, VA 24061;
Ocean Engineering,
Virginia Tech,
Blacksburg, VA 24061;
Andrew J. Wickersham
Department of Mechanical Engineering,
Virginia Tech,
Blacksburg, VA 24061
e-mail: ajwickersham@gmail.com
Virginia Tech,
Blacksburg, VA 24061
e-mail: ajwickersham@gmail.com
Wenjiang Xu
Scott J. Peltier
Timothy M. Ombrello
Campbell D. Carter
1Corresponding author.
Contributed by the Controls, Diagnostics and Instrumentation Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 14, 2015; final manuscript received July 30, 2015; published online September 1, 2015. Editor: David Wisler.
J. Eng. Gas Turbines Power. Feb 2016, 138(2): 021601 (10 pages)
Published Online: September 1, 2015
Article history
Received:
July 14, 2015
Revision Received:
July 30, 2015
Citation
Ma, L., Wickersham, A. J., Xu, W., Peltier, S. J., Ombrello, T. M., and Carter, C. D. (September 1, 2015). "Multi-angular Flame Measurements and Analysis in a Supersonic Wind Tunnel Using Fiber-Based Endoscopes." ASME. J. Eng. Gas Turbines Power. February 2016; 138(2): 021601. https://doi.org/10.1115/1.4031306
Download citation file:
Get Email Alerts
Cited By
Gas Turbine Compressor Washing Economics and Optimisation Using Genetic Algorithm
J. Eng. Gas Turbines Power
Related Articles
An Experimental Study of Lean Blowout With Hydrogen-Enriched Fuels
J. Eng. Gas Turbines Power (April,2012)
Orifice Diameter Effects on Diesel Fuel Jet Flame Structure
J. Eng. Gas Turbines Power (January,2005)
Flame Structure and Stabilization Mechanisms in a Stagnation-Point Reverse-Flow Combustor
J. Eng. Gas Turbines Power (May,2008)
Investigation of the Response of an Air Blast Atomizer Combustion Chamber Configuration on Forced Modulation of Air Feed at Realistic Operating Conditions
J. Eng. Gas Turbines Power (October,2003)
Related Proceedings Papers
Related Chapters
The Identification of the Flame Combustion Stability by Combining Principal Component Analysis and BP Neural Network Techniques
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)
Numerical Modeling of N O x Emission in Turbulant Spray Flames Using Thermal and Fuel Models
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Later Single-Cylinder Engines
Air Engines: The History, Science, and Reality of the Perfect Engine