Gas turbines burn a large variety of gaseous fuels under elevated pressure and temperature conditions. During transient operations, variable gas/air mixtures are involved in the gas piping system. In order to predict the risk of auto-ignition events and ensure a safe operation of gas turbines, it is of the essence to know the lowest temperature at which spontaneous ignition of fuels may happen. Experimental auto-ignition data of hydrocarbon–air mixtures at elevated pressures are scarce and often not applicable in specific industrial conditions. Auto-ignition temperature (AIT) data correspond to temperature ranges in which fuels display an incipient reactivity, with timescales amounting in seconds or even in minutes instead of milliseconds in flames. In these conditions, the critical reactions are most often different from the ones governing the reactivity in a flame or in high temperature ignition. Some of the critical paths for AIT are similar to those encountered in slow oxidation. Therefore, the main available kinetic models that have been developed for fast combustion are unfortunately unable to represent properly these low temperature processes. A numerical approach addressing the influence of process conditions on the minimum AIT of different fuel/air mixtures has been developed. Several chemical models available in the literature have been tested, in order to identify the most robust ones. Based on previous works of our group, a model has been developed, which offers a fair reconciliation between experimental and calculated AIT data through a wide range of fuel compositions. This model has been validated against experimental auto-ignition delay times corresponding to high temperature in order to ensure its relevance not only for AIT aspects but also for the reactivity of gaseous fuels over the wide range of gas turbine operation conditions. In addition, the AITs of methane, of pure light alkanes, and of various blends representative of several natural gas and process-derived fuels were extensively covered. In particular, among alternative gas turbine fuels, hydrogen-rich gases are called to play an increasing part in the future so that their ignition characteristics have been addressed with particular care. Natural gas enriched with hydrogen, and different syngas fuels have been studied. AIT values have been evaluated in function of the equivalence ratio and pressure. All the results obtained have been fitted by means of a practical mathematical expression. The overall study leads to a simple correlation of AIT versus equivalence ratio/pressure.

References

References
1.
Chemsafe
, “
Database of Evaluated Safety Characteristics
,” DECHEMA, BAM und PTB, Frankfurt/M., Germany, Update
2006
.
2.
Zabetakis
,
M. G.
,
1965
, “
Flammability Characteristics of Combustible Gases and Vapours
,” U.S. Department of Mines, Bulletin 627.
3.
Reed
,
R. J.
,
1986
,
North American Combustion Handbook, Vol. 1: Combustion, Fuels, Stoichiometry, Heat Transfer, Fluid Flow
, 3rd ed.,
North America Manufacturing Company
,
Cleveland
, OH, Table 10.2.
4.
Air Liquide Gas Encyclopedia
,” http://encyclopedia.airliquide.com/encyclopedia.asp
5.
Beerer
,
D. J.
, and
McDonell
,
V. G.
,
2008
, “
Autoignition of Hydrogen and Air Inside a Continuous Flow Reactor With Application to Lean Premixed Combustion
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
051507
.
6.
Steinle
,
J. U.
, and
Franck
,
E. U.
,
1995
, “
High Pressure Combustion—Ignition Temperatures to 1000 bar
,”
Ber. Bunsenges. Phys. Chem.
,
99
(
1
), pp.
66
73
.
7.
Kong
,
D.
,
Eckhoff
,
R. K.
, and
Alfert
,
F.
,
1995
, “
Auto-Ignition of CH4/air, C3H8/air, CH4/C3H8/air and CH4/CO2/air Using a 1 l Ignition Bomb
,”
J. Hazard. Mater.
,
40
(
1
), pp.
69
84
.
8.
Reid
, I
. A. B.
,
Robinson
,
C.
, and
Smith
,
D. B.
,
1984
, “
Spontaneous Ignition of Methane: Measurement and Chemical Model
,”
International Symposium on Combustion
,
20
(
1
), pp.
1833
1843
.
9.
Robinson
,
C.
, and
Smith
,
D. B.
,
1984
, “
The Auto-Ignition Temperature of Methane
,”
J. Hazard. Mater.
,
8
(
3
), pp.
199
203
.
10.
Caron
,
M.
,
Goethals
,
M.
,
De Smedt
,
G.
,
Berghmans
,
J.
,
Vliegen
,
S.
,
Van't Oost
,
E.
, and
van den Aarssen
,
A.
,
1999
, “
Pressure Dependence of the Auto-Ignition Temperature of Methane/Air Mixtures
,”
J. Hazard. Mater.
,
65
(
3
), pp.
233
244
.
11.
Norman
,
F.
,
2008
, “
Influence of Process Conditions on the Auto-Ignition Temperature of Gas Mixtures
,” Ph.D. thesis, Katholieke Universiteit Leuven, Belgium.
12.
Tan
,
Y.
,
Fotache
,
C. G.
, and
Law
,
C. K.
,
1999
, “
Effects of NO on the Ignition of Hydrogen and Hydrocarbons by Heated Conterflowing Air
,”
Combust. Flame
,
119
(
3
), pp.
346
355
.
13.
Norman
,
F.
,
Van den Schoor
,
F.
, and
Verplaetsen
,
F.
,
2006
, “
Auto-Ignition and Upper Explosion Limit of Rich Propane-Air Mixtures at Elevated Pressures
,”
J. Hazard. Mater.
,
137
(
2
), pp.
666
671
.
14.
Van den Schoor
,
F.
,
Norman
,
F.
, and
Verplaetsen
,
F.
,
2006
, “
Influence of the Ignition Source Location on the Determination of the Explosion Pressure at Elevated Initial Pressures
,”
J. Loss Prev. Process Ind.
,
19
(
5
), pp.
459
462
.
15.
Chandraratna
,
M. R.
, and
Griffiths
,
J. F.
,
1994
, “
Pressure and Concentration Dependences of the Autoignition Temperature for Normal Butane + Air Mixtures in a Closed Vessel
,”
Combust. Flame
,
99
(
3–4
), pp.
626
634
.
16.
Bartknecht
,
W.
,
1993
,
Explosionsschutz, Grundlagen und Anwendung
,
Springer, Berlin
, pp.
87
94
.
17.
EN 14522
,
2005
, “
Determination of the Minimum Ignition Temperature of Gases and Vapors
,” CEN.
18.
DIN 51974
,
1969
, “
Bestimmung der Zündtemperatur
,” DIN Deutsches Institut für Normung e.V., Berlin.
19.
ASTM E 659–78
,
1989
, “
Standard Test Method for Auto-Ignition Temperature of Liquid Chemicals
,” American Society for Testing and Materials, Philadelphia.
20.
ASTM D 2883–95
,
1995
, “
Standard Test Method of Reaction Threshold Temperature of Liquid and Solid Materials
,” American Society for Testing and Materials, Philadelphia.
21.
Smith
,
G. P.
,
Golden
,
D.
,
Frenklach
,
M.
,
Moriarty
,
N.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C.
,
Hanson
,
R.
,
Song
,
S.
,
Gardiner
,
W.
,
Lissianski
,
V.
, and
Qin
,
Z.
, “
GRI-Mech 3.0
,” http://www.me.berkeley.edu/gri_mech/
22.
Hughes
,
K. J.
,
Turányi
,
T.
,
Clague
,
A. R.
, and
Pilling
,
M. J.
,
2001
, “
Development and Testing of a Comprehensive Chemical Mechanism for the Oxidation of Methane
,”
Int. J. Chem. Kinet.
,
33
(
9
), pp.
513
538
.
23.
De Ferrières
,
S.
,
El Bakali
,
A.
,
Lefort
,
B.
,
Montero
,
M.
, and
Pauwels
,
J. F.
,
2008
, “
Experimental and Numerical Investigation of Low-Pressure Laminar Premixed Synthetic Natural Gas/O2/N2 and Natural Gas/H2/O2/N2 Flames
,”
Combust. Flame
,
154
(
3
), pp.
601
623
.
24.
Konnov
,
A. A.
,
Barnes
,
F. J.
,
Bromly
,
J. H.
,
Zhu
,
J. N.
, and
Zhang
,
D.
,
2005
, “
The Pseudo-Catalytic Promotion of Nitric Oxide Oxidation by Ethane at Low Temperatures
,”
Combust. Flame
,
141
(
3
), pp.
191
199
.
25.
Marinov
,
N. M.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
,
Vincitore
,
A. M.
,
Castaldi
,
M. J.
, and
Senkan
,
S. M.
,
1998
, “
Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-Butane Flame
,”
Combust. Flame
,
114
(
1–2
), pp.
192
213
.
26.
Donato
,
N.
,
Aul
,
C.
,
Petersen
,
E.
,
Zinner
,
C.
,
Curran
,
H.
, and
Bourque
,
G.
,
2010
, “
Ignition and Oxidation of 50/50 Butane Isomer Blends
,”
ASME J. Eng. Gas Turbines Power
,
132
(
5
), p.
051502
.
27.
Buda
,
F.
,
Bounaceur
,
R.
,
Warth
,
V.
,
Glaude
,
P. A.
,
Fournet
,
R.
, and
Battin-Leclerc
,
F.
,
2005
, “
Progress Toward a Unified Detailed Kinetic Model for the Autoignition of Alkanes From C4 to C10 Between 600 and 1200 K
,”
Combust. Flame
,
142
(
1–2
), pp.
170
186
.
28.
Tran
,
L.-S.
,
Glaude
,
P.-A.
,
Fournet
,
R.
, and
Battin-Leclerc
,
F.
,
2013
, “
Experimental and Modeling Study of Premixed Laminar Flames of Ethanol and Methane
,”
Energy Fuels
,
27
(
4
), pp.
2226
2245
.
29.
Glaude
,
P. A.
,
Conraud
,
V.
,
Fournet
,
R.
,
Battin-Leclerc
,
F.
,
Côme
,
G. M.
,
Scacchi
,
G.
,
Dagaut
,
P.
, and
Cathonnet
,
M.
,
2002
, “
Modeling the Oxidation of Mixtures of Primary Reference Automobile Fuels
,”
Energy Fuels
,
16
(
5
), pp.
1186
1195
.
30.
Biet
,
J.
,
Hakka
,
M. H.
,
Warth
,
V.
,
Glaude
,
P.-A.
, and
Battin-Leclerc
,
F.
,
2008
, “
Experimental and Modeling Study of the Low-Temperature Oxidation of Large Alkanes
,”
Energy Fuels
,
22
(
4
), pp.
2258
2269
.
31.
Glaude
,
P. A.
,
Herbinet
,
O.
,
Bax
,
S.
,
Biet
,
J.
,
Warth
,
V.
, and
Battin-Leclerc
,
F.
,
2010
, “
Modeling of the Oxidation of Methyl Esters—Validation for Methyl Hexanoate, Methyl Heptanoate, and Methyl Decanoate in a Jet-Stirred Reactor
,”
Combust. Flame
,
157
(
11
), pp.
2035
2050
.
32.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1993
, “CHEMKIN-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics,” Sandia Laboratories Report No. SAND89-8009B.
33.
Pekalski
,
A. A.
,
2004
, “
Theoretical and Experimental Study of Explosion Safety of Hydrocarbons Oxidation at Elevated Conditions
,” Ph.D. thesis, UT Delft, The Netherlands.
34.
Zhang
,
Y.
,
Jiang
,
X.
,
Wei
,
L.
,
Zhang
,
J.
,
Tang
,
C.
, and
Huang
,
Z.
,
2012
, “
Experimental and Modeling Study on Auto-Ignition Characteristics of Methane/Hydrogen Blends Under Engine Relevant Pressure
,”
Int. J. Hydrogen Energy
,
37
(
24
), pp.
19168
19176
.
35.
Lifshitz
,
A.
,
Scheller
,
K.
,
Burcat
,
A.
, and
Skinner
,
G. B.
,
1971
, “
Shock-Tube Investigation of Ignition in Methane-Oxygen-Argon Mixtures
,”
Combust. Flame
,
16
(
3
), pp.
311
321
.
36.
Hidaka
,
Y.
,
Sato
,
K.
,
Hoshikawa
,
H.
,
Nishimori
,
T.
,
Takahashi
,
R.
,
Tanaka
,
H.
,
Inami
,
K.
, and
Ito
,
N.
,
2000
, “
Shock-Tube and Modelling Study of Ethane Pyrolysis and Oxidation
,”
Combust. Flame
,
120
(
3
), pp.
245
264
.
37.
Horning
,
D. C.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2002
, “
A Study of the High-Temperature Autoignition and Thermal Decomposition of Hydrocarbons
,”
J. Propul. Power
,
18
(2), pp.
363
371
.
38.
De Vries
,
J.
, and
Petersen
,
E. L.
,
2007
, “
Autoignition of Methane-Based Fuel Blends Under Gas Turbine Conditions
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3163
3171
.
39.
Lamoureux
,
N.
, and
Paillard
,
C.-E.
,
2003
, “
Natural Gas Ignition Delay Times Behind Reflected Shock Waves: Application to Modelling and Safety
,”
Shock Waves
,
13
(
1
), pp.
57
68
.
You do not currently have access to this content.