To deepen the knowledge of the interaction between modern lean burn combustors and high pressure (HP) turbines, a nonreactive real scale annular trisector combustor simulator (CS) has been assembled at University of Florence (UNIFI), with the goal of investigating and characterizing the combustor aerothermal field as well as the hot streak transport toward the HP vanes. To generate hot streaks and simulate lean burn combustor behaviors, the rig is equipped with axial swirlers fed by a main air flow stream that is heated up to 531 K, while liners with effusion cooling holes are fed by air at ambient temperature. Detailed experimental investigations are then performed with the aim of characterizing the turbulence quantities at the exit of the combustion module, and specifically evaluating an integral scale of turbulence. To do so, an automatic traverse system is mounted at the exit of the CS and equipped to perform hot wire anemometry (HWA) measurements. In this paper, two-point correlations are computed from the time signal of the axial velocity giving access to an evaluation of the turbulence timescales at each measurement point. For assessment of the advanced numerical method that is large Eddy simulation (LES), the same methodology is applied to a LES prediction of the CS. Although comparisons seem relevant and easily accessible, both approaches and contexts have fundamental differences: mostly in terms of duration of the signals acquired experimentally and numerically but also with potentially different acquisition frequencies. In the exercise that aims at comparing high-order statistics and diagnostics, the specificity of comparing experimental and numerical results is comprehensively discussed. Attention is given to the importance of the acquisition frequency, intrinsic bias of having a short duration signal and influence of the investigating windows. For an adequate evaluation of the turbulent time scales, it is found that comparing experiments and numerics for high Reynolds number flows inferring small-scale phenomena requires to obey a set of rules, otherwise important errors can be made. If adequately processed, LES and HWA are found to agree well indicating the potential of LES for such problems.

References

References
1.
Povey
,
T.
, and
Qureshi
,
I.
,
2009
, “
Developments in Hot-Streak Simulators for Turbine Testing
,”
ASME J. Turbomach.
,
131
(
3
), p. 031009.
2.
Dorney
,
D. J.
,
Gundy-Burlet
,
K. L.
, and
Sondak
,
D. L.
,
1999
, “
A Survey of Hot Streak Experiments and Simulations
,”
Int. J. Turbo Jet Engines
,
16
(
1
), pp.
1
15
.
3.
Nasir
,
S.
,
Carullo
,
J.
,
Karen
,
W.
,
Thole
,
A.
,
Luzeng
,
H.
,
Zhang
,
J.
, and
Moon
,
H.
,
2009
, “
Effects of Large Scale High Freestream Turbulence and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
131
(
2
), p.
021021
.
4.
Ames
,
F.
,
1997
, “
The Influence of Large-Scale High Intensity Turbulence on Vane Heat Transfer
,”
ASME J. Turbomach.
,
119
(
1
), pp.
23
30
.
5.
Barringer
,
M. D.
,
Thole
,
K. A.
,
Polanka
,
M. D.
,
Clark
,
J. P.
, and
Koch
,
P. J.
,
2009
, “
Migration of Combustor Exit Profiles Through High Pressure Turbine Vanes
,”
ASME J. Turbomach.
,
131
(
2
), p. 021010.
6.
Jenkins
,
S.
,
Varadarajan
,
K.
, and
Bogard
,
D. G.
,
2004
, “
The Effects of High Mainstream Turbulence and Turbine Vane Film Cooling on the Dispersion of a Simulated Hot Streak
,”
ASME J. Turbomach.
,
126
(
1
), pp.
203
211
.
7.
Jenkins
,
S.
, and
Bogard
,
D. G.
,
2005
, “
The Effects of the Vane and Mainstream Turbulence Level on Hot Streak Attenuation
,”
ASME J. Turbomach.
,
127
(
1
), pp.
215
221
.
8.
Goldstein
,
R.
,
Lau
,
K.
, and
Leung
,
C.
,
1983
, “
Velocity and Turbulence Measurements in Combustion Systems
,”
Exp. Fluids
,
1
(
2
), pp.
93
99
.
9.
Goebel
,
S. G.
,
Abuat
,
N.
,
Lovett
,
J. A.
, and
Lee
,
C. P.
,
1993
, “
Measurements of Combustor Velocity and Turbulence Profiles
,”
ASME
Paper No. 93-GT-228.
10.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
1999
. “
Flowfield Measurements for a Highly Turbulent Flow in a Stator Vane Passage
,”
ASME J. Turbomach.
,
122
(
2
), pp.
255
262
.
11.
Cha
,
C. M.
,
Hong
,
S.
,
Ireland
,
P. T.
,
Denman
,
P.
, and
Savarianandam
,
V.
,
2012
, “
Turbulence Levels are High at the Combustor-Turbine Interface
,”
ASME
Paper No. GT2012-69130.
12.
Pitsch
,
H.
,
2006
, “
Large-Eddy Simulation of Turbulent Combustion
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
453
482
.
13.
Klapdor
,
E.
,
2010
, “
Simulation of Combustor–Turbine Interaction in a Jet Engine
,” Ph.D. thesis, Technischen Universität Darmstadt, Germany.
14.
Cant
,
S.
,
2011
, “
RANS and LES Modelling of Premixed Turbulent Combustion
,”
Turbulent Combustion Modeling
(Fluid Mechanics and its Applications, Vol. 95),
T.
Echekki
, and
E.
Mastorakos
, eds.,
Springer
,
Dordrecht
, pp.
63
90
.
15.
Bacci
,
T.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Champion
,
J.-L.
,
2015
, “
Flowfield and Temperature Profiles Measurements on a Combustor Simulator Dedicated to Hot Streaks Generation
,”
ASME
Paper No. GT2015-42217.
16.
Bacci
,
T.
,
Facchini
,
B.
,
Picchi
,
A.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Champion
,
J.-L.
,
2015
, “
Turbulence Field Measurements at the Exit of a Combustor Simulator Dedicated to Hot Streaks Generation
,”
ASME
Paper No. GT2015-42218.
17.
Koupper
,
C.
,
Caciolli
,
G.
,
Gicquel
,
L.
,
Duchaine
,
F.
,
Bonneau
,
G.
,
Tarchi
,
L.
, and
Facchini
,
B.
,
2014
, “
Development of an Engine Representative Combustor Simulator Dedicated to Hot Streak Generation
,”
ASME J. Turbomach.
,
136
(
11
), p.
111007
.
18.
Pope
,
S.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
New York
.
19.
Sagaut
,
P.
, and
Cambon
,
C.
,
2008
,
Homogeneous Turbulence Dynamics
,
Cambridge University Press
,
New York
.
20.
Nix
,
A.
,
Smith
,
A.
,
Diller
,
T.
,
Ng
,
W.
, and
Thole
,
K.
,
2002
, “
High Intensity, Large Length-Scale Freestream Turbulence Generation in a Transonic Turbine Cascade
,”
ASME
Paper No. GT2002-30523.
21.
Volino
,
R. J.
,
Schultz
,
M. P.
, and
Flack
,
K. A.
,
2007
, “
Turbulence Structure in Rough- and Smooth-Wall Boundary Layers
,”
J. Fluid Mech.
,
592
(
12
), pp.
263
293
.
22.
Coletti
,
F.
,
Cresci
,
I.
, and
Arts
,
T.
,
2012
, “
Time-Resolved PIV Measurements of Turbulent Flow in Rotating Rib-Roughened Channel With Coriolis and Buoyancy Forces
,”
ASME
Paper No. GT2012-69406.
23.
Fransen
,
R.
,
2013
, “
LES Based Aerothermal Modeling of Turbine Blade Cooling Systems
,” Ph.D. thesis, Université de Toulouse–MeGeP–Dynamique des Fluides, Toulouse, France.
24.
Poinsot
,
T.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.
25.
Yoo
,
C. S.
, and
Im
,
H. G.
,
2007
, “
Characteristic Boundary Conditions for Simulations of Compressible Reacting Flows With Multi-Dimensional, Viscous and Reaction Effects
,”
Combust. Theor. Model.
,
11
(
2
), pp.
259
286
.
26.
Mendez
,
S.
, and
Nicoud
,
F.
,
2008
, “
Adiabatic Homogeneous Model for Flow Around a Multiperforated Plate
,”
AIAA J.
,
46
(
10
), pp.
2623
2633
.
27.
Schoenfeld
,
T.
, and
Rudgyard
,
M.
,
1999
, “
Steady and Unsteady Flows Simulations Using the Hybrid Flow Solver AVBP
,”
AIAA J.
,
37
(
11
), pp.
1378
1385
.
28.
Colin
,
O.
, and
Rudgyard
,
M.
,
2000
, “
Development of High-Order Taylor–Galerkin Schemes for LES
,”
J. Comput. Phys.
,
162
(
2
), pp.
338
371
.
29.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: 1. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
You do not currently have access to this content.