This paper considers the effect of excessive total pressure losses for heat transfer problems in fluid flows with a high circumferential swirl component. At RWTH Aachen University, a novel gas generator concept is under research. This design avoids some disadvantages of small gas turbines and uses a rotating combustion chamber. During the predesign of the rotating combustion chamber using computational fluid dynamics (CFD) tools, unexpected high total pressure losses were detected. To analyze this unknown phenomenon, a gas–dynamic model of the rotating combustion chamber has been developed to explain the unexpected high Rayleigh pressure losses. The derivation of the gas–dynamic model, the physical phenomenon related to the high total pressure losses in high-swirl combustion, the influencing factors, as well as thermodynamic interpretation of the Rayleigh pressure losses, are presented in this paper. In addition, the CFD results are validated by the gas–dynamic model derived. The results presented here are of possible interest for a wide range of applications, since these fundamental findings can be transferred to all heat transfer problems in fluid flows with a high circumferential swirl component.

References

References
1.
Jeschke
,
P.
, and
Penkner
,
A.
,
2013
, “
A Novel Gas Generator for Jet Engines Using a Rotating Combustion Chamber
,”
ASME
Paper No. GT2013–95574.
2.
Jeschke
,
P.
, and
Penkner
,
A.
,
2015
, “
A Novel Gas Generator Concept for Jet Engines Using a Rotating Combustion Chamber
,”
ASME J. Turbomach.
,
137
(
7
), p.
071010
.
3.
Mattingly
,
J. D.
,
Heiser
,
W. H.
, and
Pratt
,
D. T.
,
2002
,
Aircraft Engine Design
(AIAA Education Series), 2nd ed.,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
4.
Lefebvre
,
A.
, and
Ballal
,
D.
,
2010
,
Gas Turbine Combustion
,
3rd ed.
,
CRC
,
Boca Raton, FL
.
5.
Blunck
,
D.
,
Shouse
,
D.
,
Neuroth
,
C.
,
Battelle
,
R.
,
Lynch
,
A.
,
Sekar
,
B.
,
Zelina
,
J.
,
Erdmann
,
T.
,
Burrus
,
D.
,
Howard
,
R.
,
Briones
,
A.
,
Richardson
,
D.
, and
Caswell
,
A.
,
2013
, “
Experimental and Computational Studies of an Ultra-Compact Combustor
,”
ASME
Paper No. GT2013–94372.
6.
Strehlow
,
R. A.
,
1968
,
Fundamentals of Combustion
,
International Textbook Company
,
Scranton, PA
.
7.
Erdmann
,
T. J.
,
Blunck
,
D. L.
,
Shouse
,
D.
,
Neuroth
,
C.
,
Lynch
,
A.
,
Caswell
,
A. W.
,
Richardson
,
D.
, and
Briones
,
A. M.
,
2013
, “
Rayleigh Pressure Loss Analysis and Mitigation in Ultra-Compact Combustors
,”
AIAA
Paper No. 2013-0873.
8.
Lapsa
,
A. P.
, and
Dahm
,
W. J.
,
2009
, “
Hyperacceleration Effects on Turbulent Combustion in Premixed Step-Stabilized Flames
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1731
1738
.
9.
Dahm
,
W. J. A.
,
Lapsa
,
A. P.
, and
Hamlington
,
P. E.
,
2006
, “
Inside-Out Rotary Ramjet Turbogenerator
,”
AIAA
Paper No. 2006–4169.
10.
Puranam
,
S. V.
,
Arici
,
J.
,
Sarzi-Amade
,
N.
,
Dunn-Rankin
,
D.
, and
Sirignano
,
W. A.
,
2009
, “
Turbulent Combustion in a Curving, Contracting Channel With a Cavity Stabilized Flame
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2973
2981
.
11.
Lewis
,
G. D.
,
1971
, “
Combustion in a Centrifugal-Force Field
,”
Symp. (Int.) Combust.
,
13
(
1
), pp.
625
629
.
12.
Lewis
,
G. D.
,
1973
, “
Centrifugal-Force Effects on Combustion
,”
Symp. (Int.) Combust.
,
14
(
1
), pp.
413
419
.
13.
Lewis
,
G. D.
,
Shadowen
,
J. H.
, and
Thayer
,
E. B.
,
1977
, “
Swirling Flow Combustion
,”
J. Energy
,
1
(
4
), pp.
201
205
.
14.
Egan
,
W. J.
, and
Shadowen
,
J. H.
,
1979
, “
Design and Verification of a Turbofan Swirl Augmentor
,”
J. Aircraft
,
16
(
9
), pp.
599
604
.
15.
Mestre
,
A.
, and
Benoit
,
A.
,
1973
, “
Combustion in Swirling Flow
,”
Symp. (Int.) Combust.
,
14
(
1
), pp.
719
725
.
16.
Zelina
,
J.
,
Shouse
,
D. T.
, and
Hancock
,
R. D.
,
2004
, “
Ultra-Compact Combustors for Advanced Gas Turbine Engines
,”
ASME
Paper No. GT2004–53155.
17.
Zelina
,
J.
,
Sturgess
,
G. J.
, and
Shouse
,
D. T.
,
2004
, “
The Behavior of an Ultra-Compact Combustor (UCC) Based on Centrifugally-Enhanced Turbulent Burning Rates
,”
AIAA
Paper No. 2004–3541.
18.
Zelina
,
J.
,
Greenwood
,
R. T.
, and
Shouse
,
D. T.
,
2006
, “
Operability and Efficiency Performance of Ultra-Compact, High Gravity (g) Combustor Concepts
,”
ASME
Paper No. GT2006–90119.
19.
Zelina
,
J.
,
Shouse
,
D. T.
,
Stutrud
,
J. S.
,
Sturgess
,
G. J.
, and
Roquemore
,
W. M.
,
2006
, “
Exploration of Compact Combustors for Reheat Cycle Aero Engine Applications
,”
ASME
Paper No. GT2006–90179.
20.
Zelina
,
J.
,
Anderson
,
W.
,
Koch
,
P.
, and
Shouse
,
D. T.
,
2008
, “
Compact Combustion Systems Using a Combination of Trapped Vortex and High-G Combustor Technologies
,”
ASME
Paper No. GT2008–50090.
21.
Picard
,
M.
,
Rancourt
,
D.
, and
Plante
,
J.-S.
,
2011
, “
Rim-Rotor Rotary Ramjet Engine (R4E): Design and Experimental Validation of a Proof-of-Concept Prototype
,”
ISABE Conference Proceedings
, Gothenburg, Sweden, Sept. 12–16. Paper No. ISABE2011–1258.
22.
Picard
,
M.
,
Rancourt
,
D.
,
Plante
,
J.-S.
, and
Brouillette
,
M.
,
2012
, “
Rim-Rotor Rotary Ramjet Engine, Part 2: Quasi-One-Dimensional Aerothermodynamic Design
,”
J. Propul. Power
,
28
(
6
), pp.
1304
1314
.
23.
Spytek
,
C. J.
,
2012
, “
Application of an Inter-Turbine Burner Using Core Driven Vitiated Air in a Gas Turbine Engine
,”
ASME
Paper No. GT2012–69333.
24.
Heye
,
C.
,
Lietz
,
C.
,
Martinez
,
J.
,
Raman
,
V.
, and
Blunck
,
D.
,
2013
, “
Large Eddy Simulation Analysis of Flow Field Inside a High-g Combustor
,”
AIAA
Paper No. 2013–1140.
25.
Lietz
,
C.
,
Heye
,
C.
,
Raman
,
V.
, and
Blunck
,
D.
,
2014
, “
Flame Stability Analysis in an Ultra Compact Combustor Using Large-Eddy Simulation
,”
AIAA
Paper No. 2014–1022.
26.
Penkner
,
A.
, and
Jeschke
,
P.
,
2014
, “
Analytic Rayleigh Pressure Loss Model for High-Swirl Combustion in a Rotating Combustion Chamber
,”
63 Deutscher Luft- und Raumfahrtkongress
, Augsburg, Germany, Sept. 16–18, Paper No. DLRK–2014–340267.
27.
McBride
,
B. J.
,
Heimel
,
S.
,
Ehlers
,
J. G.
, and
Gordon
,
S.
,
1963
, “
Thermodynamic Properties to 6000 K for 210 Substances Involving the First 18 Elements
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA SP-3001.
28.
Peters
,
N.
,
2010
,
Technische Verbrennung
,
RWTH Aachen University
,
Aachen, Germany
.
29.
Bräunling
,
W. J. G.
,
2009
,
Flugzeugtriebwerke
,
3rd ed.
,
Springer-Verlag
,
Berlin
.
30.
Pinkel
,
I. I.
, and
Shames
,
H.
,
1947
, “
Analysis of Jet-Propulsion-Engine Combustion-Chamber Pressure Losses
,” National Advisory Committee for Aeronautics, Washington, DC, Report No. 880, pp.
433
443
.
31.
Oertel
,
H.
,
2002
,
Prandtl–Führer durch die Strömungslehre
, Vol.
11
,
Vieweg-Verlag
,
Braunschweig, Wiesbaden, Germany
.
32.
Stanitz
,
J. D.
,
1952
, “
One-Dimensional Compressible Flow in Vaneless Diffusers of Radial- and Mixed-Flow Centrifugal Compressors, Including Effects of Friction, Heat Transfer and Area Change
,” National Advisory Committee for Aeronautics, Washington, DC, Report No. NACA TN 2610.
33.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
34.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
,
1977
, “
On Mathematical Modeling of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion
,”
Symp. (Int.) Combust.
,
16
(
1
), pp.
719
729
.
35.
Sandia
,
2014
, “
Data Archives: H2 and H2/He Jet Flames
,” Sandia National Laboratories, Albuquerque, NM, http://www.sandia.gov/TNF/DataArch/H2HeData.html
36.
Barlow
,
R. S.
,
2003
, “
Sandia H2/He Flame: Scalar Data
,” Sandia National Laboratories, Livermore, CA,
Documentation
SANDIA H2 Flame A.
37.
Flury
,
M.
, and
Schlatter
,
M.
, 2003, “
Laser Doppler Velocimetry Measurements in Turbulent Non-Premixed Hydrogen/Helium Flames
,” Sandia National Laboratories, Livermore, CA,
Documentation
SANDIA H2 Flame A.
38.
Cumpsty
,
N. A.
, and
Horlock
,
J. H.
,
2006
, “
Averaging Nonuniform Flow for a Purpose
,”
ASME J. Turbomach.
,
128
(
1
), pp.
120
129
.
39.
Miller
,
R. J.
,
2013
, “
Mechanical Work Potential
,”
ASME
Paper No. GT2013–95488.
You do not currently have access to this content.