Creep behavior in interlaminar shear of an oxide–oxide ceramic composite was evaluated at 1100 °C in laboratory air and in steam environment. The composite (N720/AS) consists of a porous aluminosilicate matrix reinforced with laminated, woven mullite/alumina (Nextel™720) fibers, has no interface between the fiber and matrix, and relies on the porous matrix for flaw tolerance. The interlaminar shear properties were measured. The interlaminar shear strength (ILSS) was determined as 7.6 MPa. The creep behavior was examined for interlaminar shear stresses in the 2–6 MPa range. Primary and secondary creep regimes were observed in all tests conducted in air and in steam. Tertiary creep was noted in tests performed at 6 MPa. Creep run-out defined as 100 hrs at creep stress was not achieved in any of the tests. Larger creep strains and higher creep strain rates were produced in steam. However, the presence of steam had a beneficial effect on creep lifetimes. Composite microstructure, as well as damage and failure mechanisms, was investigated.

References

1.
Zok
,
F. W.
,
2006
, “
Developments in Oxide Fiber Composites
,”
J. Am. Ceram. Soc.
,
89
(
11
), pp.
3309
3324
.
2.
Szweda
,
A.
,
Millard
,
M. L.
, and
Harrison
,
M. G.
,
1997
, “
Fiber Reinforced Ceramic Composite Member and Method for Making
,” U.S. Patent No. 5,601,674.
3.
Kerans
,
R. J.
,
Hay
,
R. S.
,
Parthasarathy
,
T. A.
, and
Cinibulk
,
M. K.
,
2002
, “
Interface Design for Oxidation Resistant Ceramic Composites
,”
J. Am. Ceram. Soc.
,
85
(
11
), pp.
2599
2632
.
4.
Kanka
,
B.
, and
Schneider
,
H.
,
2000
, “
Aluminosilicate Fiber/Mullite Matrix Composites With Favorable High-Temperature Properties
,”
J. Eur. Ceram. Soc.
,
20
(
5
), pp.
619
623
.
5.
Mattoni
,
M. A.
,
Yang
,
J. Y.
,
Levi
,
C. G.
,
Zok
,
F. W.
, and
Zawada
,
L. P.
,
2005
, “
Effects of Combustor Rig Exposure on a Porous-Matrix Oxide Composite
,”
Int. J. Appl. Ceram. Technol.
,
2
(
2
), pp.
133
140
.
6.
Carelli
,
E. A. V.
,
Fujita
,
H.
,
Yang
,
J. Y.
, and
Zok
,
F. W.
,
2002
, “
Effects of Thermal Aging on the Mechanical Properties of a Porous-Matrix Composite
,”
J. Am. Ceram. Soc.
,
85
(
3
), pp.
595
602
.
7.
Keller
,
K. A.
,
Mah
,
T.
,
Parthasarathy
,
T. A.
,
Boakye
,
E. E.
,
Mogilevsky
,
P.
, and
Cinibulk
,
M. K.
,
2003
, “
Effectiveness of Monazite Coatings in Oxide/Oxide Composites After Long Term Exposure at High Temperature
,”
J. Am. Ceram. Soc.
,
86
(
2
), pp.
325
332
.
8.
Hackemann
,
S.
,
Flucht
,
F.
, and
Braue
,
W.
,
2010
, “
Creep Investigations of Alumina-Based All-Oxide Ceramic Matrix Composites
,”
Composites, Part A
,
41
(
12
), pp.
1768
1776
.
9.
Zawada
,
L. P.
,
Hay
,
R. S.
,
Staehler
,
J.
, and
Lee
,
S. S.
,
2003
, “
Characterization and High Temperature Mechanical Behavior of an Oxide/Oxide Composite
,”
J. Am. Ceram. Soc.
,
86
(
6
), pp.
981
990
.
10.
Mehrman
,
J. M.
,
Ruggles-Wrenn
,
M. B.
, and
Baek
,
S. S.
,
2007
, “
Influence of Hold Times on the Elevated-Temperature Fatigue Behavior of an Oxide-Oxide Ceramic Composite in Air and in Steam
,”
Compos. Sci. Technol.
,
67
(
7–8
), pp.
1425
1438
.
11.
Ruggles-Wrenn
,
M.
, and
Braun
,
J.
,
2008
, “
Effects of Steam Environment on Creep Behavior of Nextel™720 Alumina Ceramic Composite at Elevated Temperature
,”
Mater. Sci. Eng., A
,
497
(
1–2
), pp.
101
110
.
12.
Ruggles-Wrenn
,
M. B.
, and
Genelin
,
C. L.
,
2009
, “
Creep of Nextel™720/Alumina-Mullite Ceramic Composite at 1200 °C in Air, Argon, and Steam
,”
Compos. Sci. Technol.
,
69
(
5
), pp.
663
669
.
13.
Ruggles-Wrenn
,
M. B.
,
Koutsoukos
,
P.
, and
Baek
,
S. S.
,
2008
, “
Effects of Environment on Creep Behavior of Two Oxide/Oxide Ceramic-Matrix Composites at 1200 °C
,”
J. Mater. Sci.
,
43
(
20
), pp.
6734
6746
.
14.
Ruggles-Wrenn
,
M. B.
, and
Kutsal
,
T.
,
2010
, “
Effects of Steam Environment on Creep Behavior of Nextel™720/Alumina-Mullite Ceramic Composite at Elevated Temperature
,”
Composites, Part A
,
41
(
12
), pp.
1807
1816
.
15.
Ruggles-Wrenn
,
M. B.
, and
Ozer
,
M.
,
2010
, “
Creep Behavior of Nextel™720/Alumina-Mullite Ceramic Composite With ±45 Fiber Orientation at 1200 °C
,”
Mater. Sci. Eng., A
,
527
(
20
), pp.
5326
5334
.
16.
Ruggles-Wrenn
,
M. B.
,
Siegert
,
G. T.
, and
Back
,
S. S.
,
2008
, “
Creep Behavior of Nextel™720/Alumina Ceramic Composite With ±45 Fiber Orientation at 1200 °C
,”
Compos. Sci. Technol.
,
68
(
6
), pp.
1588
1595
.
17.
Ruggles-Wrenn
,
M. B.
, and
Szymczak
,
N. R.
,
2008
, “
Effects of Steam Environment on Compressive Creep Behavior of Nextel™720/Alumina Ceramic Composite at 1200 °C
,”
Composites, Part A
,
39
(
12
), pp.
1829
1837
.
18.
Ruggles-Wrenn
,
M. B.
,
Yeleser
,
T.
,
Fair
,
G. E.
, and
Davis
,
J. B.
,
2009
, “
Effects of Steam Environment on Creep Behavior of Nextel™610/Monazite/Alumina Composite at 1100 °C
,”
Appl. Compos. Mater.
,
16
(
6
), pp.
379
392
.
19.
Armani
,
C. J.
,
Ruggles-Wrenn
,
M. B.
,
Fair
,
G. E.
, and
Hay
,
R. S.
,
2013
, “
Creep of Nextel™ 610 Fiber at 1100 °C in Air and in Steam
,”
Int. J. Appl. Ceram. Technol.
,
10
(
2
), pp.
276
284
.
20.
Armani
,
C. J.
,
Ruggles-Wrenn
,
M. B.
,
Hay
,
R. S.
, and
Fair
,
G. E.
,
2013
, “
Creep and Microstructure of Nextel™ 720 Fiber at Elevated Temperature in Air and in Steam
,”
Acta Mater.
,
61
(
16
), pp.
6114
6124
.
21.
Hay
,
R. S.
,
Armani
,
C. J.
,
Ruggles-Wrenn
,
M. B.
, and
Fair
,
G. E.
,
2014
, “
Creep Mechanisms and Microstructure Evolution of Nextel™ 610 Fiber in Air and Steam
,”
J. Eur. Ceram. Soc.
,
34
(
10
), pp.
2413
2426
.
22.
Volkmann
,
E.
,
Tushtev
,
K.
,
Koch
,
D.
,
Wilhelmi
,
C.
,
Grathwohl
,
G.
, and
Rezwan
,
K.
,
2014
, “
Influence of Fiber Orientation and Matrix Processing on the Tensile and Creep Performance of Nextel 610 Reinforced Polymer Derived Ceramic Matrix Composites
,”
Mater. Sci. Eng., A
,
614
, pp.
171
179
.
23.
Volkmann
,
E.
,
Dentel
,
A.
,
Tushtev
,
K.
,
Wilhelmi
,
C.
, and
Rezwan
,
K.
,
2014
, “
Influence of Heat Treatment and Fiber Orientation on the Damage Threshold and the Fracture Behavior of Nextel Fiber-Reinforced Mullite-SiOC Matrix Composites Analyzed by Acoustic Emission Monitoring
,”
J. Mater. Sci.
,
49
(
22
), pp.
7890
7899
.
24.
Volkmann
,
E.
,
Evangelista
,
L. L.
,
Tushtev
,
K.
,
Koch
,
D.
,
Wilhelmi
,
C.
, and
Rezwan
,
K.
,
2014
, “
Oxidation-Induced Microstructural Changes of a Polymer Derived Nextel™ 610 Ceramic Composite and Impact on the Mechanical Performance
,”
J. Mater. Sci.
,
49
(
2
), pp.
710
719
.
25.
Choi
,
S. R.
,
Kowalik
,
R. W.
,
Alexander
,
D. J.
, and
Bansal
,
N. P.
,
2007
, “
Assessments of the Life Limiting Behavior in Interlaminar Shear for Hi-Nic SiC/SiC Ceramic Matrix Composite at Elevated Temperature
,”
Ceram. Eng. Sci. Proc.
,
28
(
2
), pp.
179
189
.
26.
Choi
,
S. R.
, and
Bansal
,
N. P.
,
2006
, “
Interlaminar Tension/Shear Properties and Stress Rupture in Shear of Various Continuous Fiber-Reinforced Ceramic Matrix Composites
,”
Ceram. Trans.
,
175
, pp.
119
134
.
27.
Choi
,
S. R.
, and
Bansal
,
N. P.
,
2004
, “
Shear Strength as a Function of Test Rate for SiCf/BSAS Ceramic Matrix Composite at Elevated Temperature
,”
J. Am. Ceram. Soc.
,
87
(
10
), pp.
912
918
.
28.
Choi
,
S. R.
,
Bansal
,
N. P.
,
Calomino
,
A. M.
, and
Verrilli
,
M. J.
,
2005
, “
Shear Strength Behavior of Ceramic Matrix Composites at Elevated Temperature
,”
Ceram. Trans.
,
165
, pp.
131
145
.
29.
Choi
,
S. R.
,
Kowalik
,
R. W.
,
Alexander
,
D. J.
, and
Bansal
,
N. P.
,
2009
, “
Elevated-Temperature Stress Rupture in Interlaminar Shear of a Hi-Nic SiC/SiC Ceramic Matrix Composite
,”
Compos. Sci. Technol.
,
69
(
7–8
), pp.
890
897
.
30.
Ruggles-Wrenn
,
M. B.
, and
Laffey
,
P. D.
,
2008
, “
Creep Behavior in Interlaminar Shear of a Nextel™720/Alumina Ceramic Composite at Elevated Temperature in Air and in Steam
,”
Compos. Sci. Technol.
,
68
(
10–11
), pp.
2260
2266
.
31.
Ruggles-Wrenn
,
M. B.
,
Pope
,
M. T.
, and
Zens
,
T. W.
,
2014
, “
Creep Behavior in Interlaminar Shear of a Hi-Nicalon™/SiC-B4C Composite at 1200 °C in Air and in Steam
,”
Mater. Sci. Eng., A
,
610
, pp.
279
289
.
32.
Jurf
,
R. A.
, and
Butner
,
S. C.
,
2000
, “
Advances in Oxide-Oxide CMC
,”
ASME J. Eng. Gas Turbines Power
,
122
(
2
), pp.
202
205
.
33.
ASTM
,
2006
, “
Test Method for Interlaminar Shear Strength of 1-D and 2-D Continuous Fiber-Reinforced Advanced Ceramics at Elevated Temperatures
,”
Annual Book of ASTM Standards
, Vol. 15.01, ASTM Internastional,
West Conshohocken, PA
.
34.
Levi
,
C. G.
,
Yang
,
J. Y.
,
Dalgleish
,
B. J.
,
Zok
,
F. W.
, and
Evans
,
A. G.
,
1998
, “
Processing and Performance of an All-Oxide Ceramic Composite
,”
J. Am. Ceram. Soc.
,
81
(
8
), pp.
2077
2086
.
35.
Buchanan
,
D. J.
,
John
,
R.
, and
Zawada
,
L. P.
,
2008
, “
Off-Axis Creep Behavior of Oxide/Oxide Nextel™720/AS-0
,”
Compos. Sci. Technol.
,
68
(
6
), pp.
1313
1320
.
36.
Sherer
,
G. W.
,
1998
, “
Coarsening in a Viscous Matrix
,”
J. Am. Ceram. Soc.
,
81
(
1
), pp.
49
54
.
37.
Bordia
,
R. K.
, and
Jagota
,
A.
,
1993
, “
Crack Growth and Damage in Constrained Sintering Films
,”
J. Am. Ceram. Soc.
,
76
(
10
), pp.
2475
2485
.
38.
Sherer
,
G. W.
,
1988
, “
Viscous Sintering With a Pore-Size Distribution and Rigid Inclusions
,”
J. Am. Ceram. Soc.
,
71
(
10
), pp.
C447
C448
.
39.
Sherer
,
G. W.
,
1984
, “
Viscous Sintering of a Bimodal Pore-Size Distribution
,”
J. Am. Ceram. Soc.
,
67
(
11
), pp.
709
715
.
40.
Parikh
,
N. M.
,
1958
, “
Effect of Atmosphere on Surface Tension of Glass
,”
J. Am. Ceram. Soc.
,
41
(
1
), pp.
18
22
.
You do not currently have access to this content.