The design process of journal bearings of turbomachines is complex and time-consuming due to the many geometric and physical variables involved. This paper reports on the design of experiments (DOE) and the response surface design of experiments (RSDOE) methods employed on the design of the drive-end and free-end three-lobe journal bearings supporting a centrifugal compressor rotor. The suitability of each technique is discussed. The bearing design variables employed are bearing slenderness ratio, radial clearance, preload, and lubricant inlet temperature. The rotordynamic response variables selected were the critical speed location, the vibrations at critical speed and operating speed for both bearings, and the threshold speed of instability. The use of a nonlinear (quadratic) RSDOE model is justified. An optimization approach combining an SRDOE and rotordynamic finite element modeling is presented. This method leads to arrive to a multivariate model for multi-objective optimization with very few computations. Identification of the dominant design variables and their effects on several response variables allows establishing engineering feasible solutions with focus on manufacturing versus operating conditions tradeoff.

References

References
1.
Barret
,
L. E.
,
Gunter
,
E. J.
, and
Allaire
,
P. E.
,
1978
, “
Optimum Bearing and Support Damping for Unbalance Response and Stability of Rotating Machinery
,”
ASME J. Eng. Gas Turbines Power
,
100
(
1
), pp.
89
94
.
2.
Chen
,
T. Y.
, and
Wang
,
B. P.
,
1993
, “
Optimum Design of Rotor Bearing Systems With Eigenvalue Constraints
,”
ASME J. Eng. Gas Turbines Power
,
115
(
2
), pp.
256
260
.
3.
Shiau
,
T. N.
, and
Chang
,
J. R.
,
1993
, “
Multi-Objective Optimization of Rotor-Bearing System With Critical Speed Constraints
,”
ASME J. Eng. Gas Turbines Power
,
115
(
2
), pp.
246
255
.
4.
Lee
,
D. S.
, and
Choi
,
D. H.
,
2000
, “
Reduced Weight Design of a Flexible Rotor With Ball Bearing Stiffness Characteristics Varying With Rotational Speed and Load
,”
ASME J. Vib. Acoust.
,
122
(
3
), pp.
203
208
.
5.
Hashimoto
,
H.
, and
Matsumoto
,
K.
,
2000
, “
Improvement of Operating Characteristics of High-Speed Hydrodynamic Journal Bearings by Optimum Design: Part I—Formulation of Methodology and Its Application to Elliptical Bearing Design
,”
ASME J. Tribol.
,
123
(
2
), pp.
305
312
.
6.
Choi
,
B. G.
, and
Yang
,
B. S.
,
2000
, “
Optimal Shape Design of Rotor Shafts Using Genetic Algorithm
,”
J. Vib. Control
,
6
(
2
), pp.
207
222
.
7.
Yang
,
B. S.
,
Lee
,
Y. H.
,
Choi
,
B. K.
, and
Kim
,
H. J.
,
2001
, “
Optimum Design of Short Journal Bearings by Artificial Life Algorithm
,”
J. Tribol. Int.
,
34
(
7
), pp.
427
435
.
8.
Saruhan
,
H.
,
Rouch
,
K. E.
, and
Roso
,
C. A.
,
2001
, “
Design Optimization of Fixed Pad Journal Bearing for Rotor System Using a Genetic Algorithm Approach
,”
International Symposium on Stability Control of Rotating Machinery (ISCORMA)
, Lake Tahoe, NV, Aug. 20–24, Paper No. 3001.
9.
Saruhan
,
H.
,
Rouch
,
K. E.
, and
Roso
,
C. A.
,
2004
, “
Design Optimization of Tilting-Pad Journal Bearing Using a Genetic Algorithm Approach
,”
Int. J. Rotating Mach.
,
10
(
4
), pp.
301
307
.
10.
Roso
,
C. A.
,
1997
, “
Optimization of Rotor-Bearing Systems for Industrial Turbomachinery Applications
,” Ph.D. thesis, University of Kentucky, Lexington, KY.
11.
Angantyr
,
A.
, and
Aidanpää
,
J.-O.
,
2004
, “
Optimization of a Rotor Bearing System With Evolutionary Algorithm
,”
10th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(ISROMAC-2004), Honolulu, HI, Mar. 7–11.
12.
Angantyr
,
A.
, and
Aidanpää
,
J.-O.
,
2005
, “
Constrained Optimization of Gas Turbine Tilting Pad Bearing Designs
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
873
878
.
13.
Hirani
,
H.
, and
Suh
,
N. P.
,
2005
, “
Journal Bearing Design Using Multiobjective Genetic Algorithm and Axiomatic Design Approaches
,”
J. Tribol. Int.
,
38
(
5
), pp.
481
491
.
14.
Pugachev
,
A. O.
,
Sheremetyev
,
A. V.
,
Tykhomirov
,
V. V.
, and
Timchenko
, I
. D.
,
2010
, “
Gradient-Based Optimization of a Turboprop Rotor System With Constraints on Stresses and Natural Frequencies
,”
51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Orlando, FL, Apr. 12–15,
AIAA
Paper No. 2010-3006.
15.
Untaroiu
,
C. D.
, and
Untaroiu
,
A.
,
2010
, “
Constrained Design Optimization of Rotor-Tilting Pad Bearing Systems
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
122502
.
16.
Cole
,
M. O. T.
,
Wongratanaphisan
,
T.
, and
Keogh
,
P. S.
,
2006
, “
On LMI-Based Optimization of Vibration and Stability in Rotor System Design
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
677
684
.
17.
Montgomery
,
D. C.
,
2012
,
Design and Analysis of Experiments
, 8th ed.,
Wiley
,
New York
.
18.
Mason
,
R.
,
Gunst
,
L. R. F.
, and
Hess
,
J. L.
,
2003
,
Statistical Design and Analysis of Experiments With Applications to Engineering and Science
,
Wiley
,
New York
.
19.
Rao
,
C. R.
,
1947
, “
Factorial Experiments Derivable From Combinatorial Arrangements of Arrays
,”
J. R. Stat. Soc.
,
9
(
1
), pp.
128
139
.
20.
Urbiola-Soto
,
L.
,
Aboites
,
F.
, and
De Santiago
,
O.
,
2003
,
Análisis Rotodinámico Lateral de Compresores Centrífugos para Proceso, Reinyección y Transmisión de Gas - Parte I: Objetivos
,” Memorias del 7° Congreso y Expo Internacional de Ductos, Puebla, México, pp.
1
11
.
21.
Urbiola-Soto
,
L.
,
Aboites
,
F.
,
De Santiago
,
O.
,
Bertín
,
G.
, and
García
,
R.
,
2003
, “
Análisis Rotodinámico Lateral de Compresores Centrífugos para Proceso, Reinyección y Transmisión de Gas - Parte II: Metodología
,” Memorias del 7° Congreso y Expo Internacional de Ductos, Puebla, México, pp.
1
11
.
22.
XLRotor
,
2016
, “
Spreadsheets for Rotordynamic Analysis
,” Version 3.945,
Rotating Machinery Analysis, Inc.
, Brevard, NC.
23.
API
,
2002
, “
Axial and Centrifugal Compressors and Expander-Compressors for Petroleum, Chemical, and Gas Industry Services
,” 7th ed., American Petroleum Institute, Washington, DC, API Standard 617.
24.
Minitab 16, Minitab Inc., Version 16.2.4.
25.
Allaire
,
P.
, and
Flack
,
R. D.
,
1981
, “
Design of Journal Bearings for Rotating Machinery
,”
10th Turbomachinery Symposium
(
TAMU
), Houston, TX, Dec. 1–3, pp.
25
45
.
You do not currently have access to this content.