The simultaneous expansion of variable renewables and combined heat and power (CHP) plants in Europe has given rise to a discussion about their compatibility. Due to the concurrence of high wind power generation and high heating loads, it has been argued that only the flexible, electricity-oriented operation of CHP plants could go along with the extended penetration of renewables in the European energy system. The current work focuses on the wet-cycle simulation of a Turbec T-100. Three operational strategies are applied on the heat and electricity demand data of a public building, to assess the economic and environmental performance of the wet cycle. The operation of the micro gas turbine (mGT) is modeled in aspen plus, and the model is validated with data found in the literature. The economic aspects of the operational strategies are assessed with a financial model, which takes into account the current CHP policy incentives and price levels. Furthermore, the advantages and drawbacks of wet operation are highlighted by its comparison to the typical heat-driven operation of dry-cycle mGTs, with a reference to the same case study. It is shown that the wet-cycle turbines have a higher number of full load equivalent operating hours and can achieve higher investment payback, with minor drawbacks to their overall environmental performance.

References

References
1.
Wünsch
,
M.
,
2014
, “
Entwicklung der KWK seit der letzten KWKG-Novelle und aktuelle Marktbedingungen
,”
12th Duisburger KWK-Symposium
, Duisberg, Germany, May 27–28.
2.
Haugwitz
,
S.
,
2002
, “
Modelling of Microturbine Systems
,” M.Sc. thesis, Lund Institute of Technology, Lund, Sweden.
3.
Zhang
,
N.
, and
Cai
,
R.
,
2002
, “
Analytical Solutions and Typical Characteristics of Part-Load Performances of Single Shaft Gas Turbine and Its Cogeneration
,”
Energy Convers. Manag.
,
43
(9–12), pp.
1323
1337
.
4.
Ho
,
J. C.
,
Chua
,
K. J.
, and
Chou
,
S. K.
,
2004
, “
Performance Study of a Microturbine System for Cogeneration Application
,”
Renewable Energy
,
29
(
7
), pp.
1121
1133
.
5.
Hohloch
,
M.
,
2010
, “
Experimental Characterization of a Micro Gas Turbine Test Rig
,”
ASME
Paper No. GT2010-22799.
6.
Cafaro
,
S.
, and
Traverso
,
A.
,
2009
, “
Performance Monitoring of Gas Turbine Components: A Real Case Study Using a Micro Gas Turbine Test Rig
,”
ASME
Paper No. GT2009-59059.
7.
Ferrari
,
M. L.
,
Pascenti
,
M.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2009
, “
Micro Gas Turbine Recuperator: Steady-State and Transient Experimental Investigation
,”
ASME J. Eng. Turbines Power
,
132
(2), p.
022301
.
8.
Campanari
,
S.
, and
Macchi
,
E.
,
2004
, “
Technical and Tariff Scenarios Effect on Microturbine Trigenerative Applications
,”
ASME J. Eng. Gas Turbines Power
,
126
(
3
), pp.
581
–589.
9.
Kaikko
,
J.
,
Backman
,
J.
,
Koskelainen
,
L.
, and
Larjola
,
J.
,
2007
, “
Technical and Economic Performance Comparison Between Recuperated and Non-Recuperated Variable-Speed Microturbines in Combined Heat and Power Generation
,”
Appl. Therm. Eng.
,
27
(
13
), pp.
2173
2180
.
10.
Kaikko
,
J.
, and
Backman
,
J.
,
2007
, “
Technical and Economic Performance Analysis for a Microturbine in Combined Heat and Power Generation
,”
Energy
,
32
(
4
), pp.
378
387
.
11.
Delattin
,
F.
,
Bram
,
S.
,
Knoops
,
S.
, and
De Ruyck
,
J.
,
2008
, “
Effects of Steam Injection on Microturbine Efficiency and Performance
,”
Energy
,
33
(
2
), pp.
241
247
.
12.
De Paepe
,
W.
,
Delattin
,
F.
,
Bram
,
S.
, and
De Ruyck
,
J.
,
2012
, “
Steam Injection Experiments in a Microturbine—A Thermodynamic Performance Analysis
,”
Appl. Energy
,
97
, pp.
569
576
.
13.
Gailfuß
,
M.
,
2013
, “
Blockheizkraftwerke 2013: ein Markt im Umbruch
,”
Euro Heat Power
,
42
(
7–8
), pp.
69
71
(in German).
14.
German Federal Statistical Office
,
2014
, “
Statistical Data on the Number of Installed CHP Units According to the CHP Law
,” German Federal Statistical Office, Wiesbaden, Germany.
15.
ASUE
,
2011
, “
BHKW-Kenndaten 2011
,” Arbeitsgemeinschaft für sparsamen und umweltfreundlichen Energieverbrauch e.V. (
ASUE
), Berlin, Germany (in German).
16.
EPA
,
2014
, “
Catalog of CHP Technologies
,” U.S. Environmental Protection Agency, Washington, DC.
17.
Gores
,
S.
,
Jörß
,
W.
,
Harthan
,
R.
,
Ziesing
,
H. J.
, and
Horst
,
J.
,
2014
, “
KWK-Ausbau: Entwicklung, Prognose, Wirksamkeit im KWK-Gesetz unter Berücksichtigung von Emissionshandel, Erneuerbare-Energien-Gesetz und anderen Instrumenten
,” Umweltbundesamt, Dessau-Roßlau, Germany.
18.
Bundesministeriums der Justiz,
2013
, “
Gesetz für die Erhaltung, die Modernisierung und den Ausbau der Kraft-Wärme-Kopplung
,” Bundesministeriums der Justiz, Germany, pp.
1
13
.
19.
Data.gov.uk,
2013
, “
Transparency Board of the UK Government
,”
Open Government Project
, London, UK.
20.
The European Council
,
2004
, “
DIRECTIVE 2004/8/EC on the Promotion of Cogeneration Based on a Useful Heat Demand in the Internal Energy Market
,” The European Parliament and the Council, Brussels, Belgium, p.
11
.
21.
The European Council
,
2011
, “
Commission Decision 2011/877/EU: Establishing Harmonised Efficiency Reference Values for Separate Production of Electricity and Heat in Application of Directive 2004/8/EC
,” The European Parliament and the Council, Brussels, Belgium, p.
6
.
22.
The European Council
,
2008
, “
Commission Decision 2008/952/EC: Establishing Detailed Guidelines for the Implementation and Application of Annex II to Directive 2004/8/EC
,” The European Parliament and the Council, Brussels, Belgium, p.
7
.
23.
Wille-Haussmann
,
B.
,
Erge
,
T.
, and
Wittwer
,
C.
,
2010
, “
Decentralised Optimisation of Cogeneration in Virtual Power Plants
,”
Sol. Energy
,
84
(
4
), pp.
604
611
.
24.
Asmus
,
P.
,
2010
, “
Microgrids, Virtual Power Plants and Our Distributed Energy Future
,”
Electr. J.
,
23
(
10
), pp.
72
82
.
25.
Gores
,
S.
,
Harthan
,
R.
,
Hauke
,
H.
,
Loreck
,
C.
, and
Matthes
,
F.
,
2013
, “
Perspektiven der Kraft-Wärme- Kopplung im Rahmen der Energiewende
,” Oeko-Institut, Berlin, Germany.
26.
German Federal Statistical Office
,
2012
, “
Statistical Data on Primary Energy Use and Energy Generation Between 2003–2011
,” German Federal Statistical Office, Wiesbaden, Germany.
You do not currently have access to this content.