Alumina-forming austenitic (AFA) steels represent a new class of corrosion- and creep-resistant austenitic steels designed to enable higher temperature recuperators. Field trials are in progress for commercially rolled foil with widths over 39 cm. The first trial completed 3000 hrs in a microturbine recuperator with an elevated turbine inlet temperature and showed limited degradation. A longer microturbine trial is in progress. A third exposure in a larger turbine has passed 16,000 hrs. To reduce alloy cost and address foil fabrication issues with the initial AFA composition, several new AFA compositions are being evaluated in creep and laboratory oxidation testing at 650–800 °C and the results compared to commercially fabricated AFA foil and conventional recuperator foil performance.

References

References
1.
Maidment
,
G. G.
, and
Tozer
,
R. M.
,
2002
, “
Combined Cooling Heat and Power in Supermarkets
,”
Appl. Therm Eng.
,
22
(
6
), pp.
653
665
.
2.
Alanne
,
K.
, and
Saari
,
A.
,
2004
, “
Sustainable Small-Scale CHP Technologies for Buildings: The Basis for Multi-Perspective Decision-Making
,”
Renewable Sustainable Energy Rev.
,
8
(
5
), pp.
401
431
.
3.
Kuhn
,
V.
,
Klemes
,
J.
, and
Bulatov
,
I.
,
2008
, “
MicroCHP: Overview of Selected Technologies, Products and Field Test Results
,”
Appl. Therm. Eng.
,
28
(
16
), pp.
2039
2048
.
4.
Chicco
,
G.
, and
Mancarella
,
P.
,
2009
, “
Distributed Multi-Generation: A Comprehensive View
,”
Renewable Sustainable Energy Rev.
,
13
(
3
), pp.
535
551
.
5.
Watts
,
J. H.
,
1999
, “
Microturbines: A New Class of Gas Turbine Engine
,”
Global Gas Turbine News
,
39
(
1
), pp.
4
8
.
6.
Hamilton
,
S. L.
,
2003
,
The Handbook of Microturbine Generators
,
PennWell
,
Tulsa, OK
.
7.
Gillette
,
S.
,
2010
, “
Microturbine Technology Matures
,”
Power
,
154
(
11
), pp.
52
53
.
8.
McDonald
,
C. F.
, and
Wilson
,
D. G.
,
1996
, “
The Utilization of Recuperated and Regenerated Engine Cycles for High-Efficiency Gas Turbines in the 21st Century
,”
Appl. Therm. Eng.
,
16
(8–9), pp.
635
653
.
9.
Omatete
,
O.
,
Maziasz
,
P. J.
,
Pint
,
B. A.
, and
Stinton
,
D. P.
,
2000
, “
Recuperators for Advanced Microturbines
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL/TM-2000/304.
10.
Kesseli
,
J.
,
Wolf
,
T.
,
Nash
,
J.
, and
Freedman
,
S.
,
2003
, “
Micro, Industrial, and Advanced Gas Turbines Employing Recuperators
,”
ASME
Paper No. GT2003-38938.
11.
Pint
,
B. A.
, and
Rakowski
,
J. M.
,
2000
, “
Effect of Water Vapor on the Oxidation Resistance of Stainless Steels
,”
NACE
Corrosion 2000, Orlando, FL, Mar. 26–31, NACE Paper No. 00-259.
12.
Asteman
,
H.
,
Svensson
,
J.-E.
,
Norell
,
M.
, and
Johansson
,
L.-G.
,
2000
, “
Influence of Water Vapor and Flow Rate on the High-Temperature Oxidation of 304L; Effect of Chromium Oxide Hydroxide Evaporation
,”
Oxid. Met.
,
54
(1), pp.
11
26
.
13.
Opila
,
E. J.
,
2004
, “
Volatility of Common Protective Oxides in High-Temperature Water Vapor: Current Understanding and Unanswered Questions
,”
Mater. Sci. Forum
,
461–464
, pp.
765
774
.
14.
Pint
,
B. A.
,
2005
, “
The Effect of Water Vapor on Cr Depletion in Advanced Recuperator Alloys
,”
ASME
Paper No. GT2005-68495.
15.
Young
,
D. J.
, and
Pint
,
B. A.
,
2006
, “
Chromium Volatilization Rates From Cr2O3 Scales Into Flowing Gases Containing Water Vapor
,”
Oxid. Met.
,
66
(3), pp.
137
153
.
16.
Pint
,
B. A.
,
2006
, “
Stainless Steels With Improved Oxidation Resistance for Recuperators
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
370
376
.
17.
Matthews
,
W. J.
,
More
,
K. L.
, and
Walker
,
L. R.
,
2007
, “
Accelerated Oxidation of Type 347 Stainless Steel Primary Surface Recuperators Operating Above 650 °C
,”
ASME
Paper No. GT2007-27916.
18.
Pint
,
B. A.
,
More
,
K. L.
,
Trejo
,
R.
, and
Lara-Curzio
,
E.
,
2008
, “
Comparison of Recuperator Alloy Degradation in Laboratory and Engine Testing
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012101
.
19.
Rakowski
,
J. M.
,
Stinner
,
C. P.
,
Lipschutz
,
M.
, and
Montague
,
J. P.
, “
Metallic Alloys for Primary Surface Recuperators
,”
ASME
Paper No. GT2006-90680.
20.
Matthews
,
W. J.
,
More
,
K. L.
, and
Walker
,
L. R.
,
2009
, “
Comparison of Three Microturbine Primary Surface Recuperators
,”
ASME
Paper No. GT2009-59041.
21.
Bender
,
M. D.
, and
Klug
,
R. C.
,
2014
, “
Comparison of Ni-Based 625 Alloy and ATI 20-25+Nb™ Stainless Steel Foils After Long-Term Exposure to Gas Turbine Engine Exhaust
,”
ASME
Paper No. GT2014-25334.
22.
Pint
,
B. A.
,
Dryepondt
,
S.
,
Rouaix-Vande Put
,
A.
, and
Zhang
,
Y.
,
2012
, “
Mechanistic-Based Lifetime Predictions for High Temperature Alloys and Coatings
,”
JOM
,
64
(
12
), pp.
1454
1460
.
23.
Pint
,
B. A.
,
Unocic
,
K. A.
, and
Dryepondt
,
S.
,
2010
, “
Oxidation of Superalloys in Extreme Environments
,”
7th International Symposium on Superalloy 718 and Derivatives
,
E. A.
Ott
,
J. R.
Groh
,
A.
Banik
,
I.
Dempster
,
T. P.
Gabb
,
R.
Helmink
,
X.
Liu
,
A.
Mitchell
,
G. P.
Sjoberg
, and
A.
Wusatowska-Sarnek
, eds., TMS, Warrendale, PA, pp.
861
875
.
24.
Yamamoto
,
Y.
,
Brady
,
M. P.
,
Lu
,
Z. P.
,
Maziasz
,
P. J.
,
Liu
,
C. T.
,
Pint
,
B. A.
,
More
,
K. L.
,
Meyer
,
H. M.
, and
Payzant
,
E. A.
,
2007
, “
Creep-Resistant, Al2O3-Forming Austenitic Stainless Steels
,”
Science
,
316
(
5823
), pp.
433
436
.
25.
Pint
,
B. A.
,
Shingledecker
,
J. P.
,
Brady
,
M. P.
, and
Maziasz
,
P. J.
,
2007
, “
Alumina-Forming Austenitic Alloys for Advanced Recuperators
,”
ASME
Paper No. GT2007-27916.
26.
Brady
,
M. P.
,
Yamamoto
,
Y.
,
Santella
,
M. L.
,
Maziasz
,
P. J.
,
Pint
,
B. A.
,
Liu
,
C. T.
,
Lu
,
Z. P.
, and
Bei
,
H.
,
2008
, “
The Development of Alumina-Forming Austenitic Stainless Steels for High-Temperature Structural Use
,”
JOM
,
60
(
7
), pp.
12
18
.
27.
Pint
,
B. A.
,
Brady
,
M. P.
,
Yamamoto
,
Y.
,
Santella
,
M. L.
,
Maziasz
,
P. J.
, and
Matthews
,
W. J.
,
2011
, “
Evaluation of Alumina-Forming Austenitic Foil for Advanced Recuperators
,”
ASME J. Eng. Gas Turbines Power
,
133
(
10
), p.
102302
.
28.
Pint
,
B. A.
,
Brady
,
M. P.
,
Yamamoto
,
Y.
,
Unocic
,
K. A.
, and
Matthews
,
W. J.
,
2011
, “
Evaluation of Commercial Alumina-Forming Austenitic Foil for Advanced Recuperators
,”
ASME
Paper No. GT2011-46704.
29.
Yamamoto
,
Y.
,
Brady
,
M. P.
,
Santella
,
M. L.
,
Bei
,
H.
,
Maziasz
,
P. J.
, and
Pint
,
B. A.
,
2011
, “
Alloy Design Concept for High-Temperature Creep Resistance of Alumina-Forming Austenitic Stainless Steels
,”
Metall. Mater. Trans. A
,
42
(
4
), pp.
922
931
.
30.
Pint
,
B. A.
,
Dryepondt
,
S.
,
Brady
,
M. P.
, and
Yamamoto
,
Y.
,
2013
, “
Evaluation of Commercial and Next Generation Alumina-Forming Austenitic Foil for Advanced Recuperators
,”
ASME
Paper No. GT2013-94940.
31.
Yamamoto
,
Y.
,
Santella
,
M. L.
,
Brady
,
M. P.
,
Bei
,
H.
, and
Maziasz
,
P. J.
,
2009
, “
Effect of Alloying Additions on Phase Equilibria and Creep Resistance of Alumina-Forming Austenitic Stainless Steels
,”
Metall. Mater. Trans. A
,
40
(
8
), pp.
1868
1880
.
You do not currently have access to this content.