Numerical simulation results of a single-jet premixed combustion system at atmospheric pressure are compared against comprehensive particle image velocimetry (PIV) flow measurements and Raman scattering temperature measurements for natural gas and hydrogen fuels. The simulations were performed on hexahedral meshes with 1–5 × 106 elements. Reynolds-averaged Navier–Stokes (RANS) calculations were carried out with the k–ε realizable turbulence model. Combustion was modeled using the flamelet-generated manifold model (FGM) and detailed chemistry. Both the flame position and flame liftoff predicted by the FGM were in reasonable agreement with experiments for both fuels and showed little sensitivity to heat transfer or radiation modeling. The detailed chemistry calculation predicts the temperature gradients along the jet centerline accurately and compares very closely with the Raman scattering measurements. The much closer agreement of the jet axial velocity and temperature profiles with experimental values, coupled with the significantly protracted presence of intermediates in the detailed chemistry predictions, indicates that the impact of nonequilibrium intermediates on very lean natural gas flames is significant.

References

1.
Sloan
,
D.
,
Smoot
,
L.
, and
Smith
,
P.
,
1985
, “
Modeling of Swirl in Turbulent Flow Systems
,” Combustion Institute, San Antonio, TX.
2.
Hogg
,
S.
, and
Leschziner
,
M.
,
1989
, “
Computation of Highly Swirling Flows With a Reynolds Stress Turbulence Model
,”
AIAA J.
,
27
, pp.
57
63
.
3.
Jones
,
W.
, and
Pascau
,
A.
,
1989
, “
Calculation of Confined Swirling Flows With a Second Moment Closure
,”
ASME J. Fluids Eng.
,
111
(
3
), pp.
248
255
.
4.
Patil
,
S.
,
Sedalor
,
T.
,
Tafti
,
D.
,
Ekkad
,
S.
,
Kim
,
Y.
,
Dutta
,
P.
,
Moon
,
H.-K.
, and
Srinivasan
,
R.
,
2011
, “
Study of Flow and Convective Heat Transfer in a Simulated Scaled Up Low Emission Annular Combustor
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
3
), p.
031010
.
5.
Davoudzadeh
,
F.
, and
Liu
,
N.-S.
,
2004
, “
Numerical Prediction of Non-Reacting and Reacting Flow in a Model Gas Turbine Combustor
,”
ASME
Paper No. GT2004-53496.
6.
Wegner
,
B.
,
Gruschka
,
U.
,
Krebs
,
W.
,
Egorov
,
Y.
,
Forkel
,
H.
,
Ferreira
,
J.
, and
Aschmoneit
,
K.
,
2010
, “
CFD Prediction of Partload CO Emissions Using a Two-Timescale Combustion Model
,”
ASME
Paper No. GT2010-22241.
7.
Patil
,
S.
,
Abraham
,
S.
,
Tafti
,
D.
,
Ekkad
,
S.
,
Kim
,
Y.
,
Dutta
,
P.
,
Moon
,
H.-K.
, and
Srinivasan
,
R.
,
2011
, “
Experimental and Numerical Investigation of Convective Heat Transfer in a Gas Turbine Can Combustor
,”
ASME J. Turbomach.
,
133
(
1
), p.
011028
.
8.
Fancello
,
A.
,
Bastiaans
,
R.
, and
De Goey
,
L.
,
2011
, “
Numerical Simulation of Turbulent Combustion Using RANS-LES Models and Flamelet Generated Manifolds
,”
5th European Combustion Meeting
(
ECM
), Cardiff, Wales, June 27–July 1.
9.
Golding
,
G.
,
Montanari
,
F.
, and
Patil
,
S.
,
2014
, “
A Comparison of RANS and LES of an Industrial Lean Premixed Burner
,”
ASME
Paper No. GT2014-25352.
10.
Fernando
,
F.
,
Grinstein
,
T.
,
Young
,
R.
,
Gutmark
,
E.
,
Li
,
G.
,
Hsiao
,
G.
, and
Mongia
,
H.
,
2002
, “
Flow Dynamics in a Swirl Combustor
,”
J. Turbul.
,
3
, pp.
27
29
.
11.
Grinstein
,
F.
, and
Furby
,
C.
,
2005
, “
LES Studies of the Flow in a Swirl Gas Combustor
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
1791
1798
.
12.
Patil
,
S.
, and
Tafti
,
D.
,
2012
, “
Large Eddy Simulation of Flow and Convective Heat Transfer in a Gas Turbine Can Combustor With Synthetic Inlet Turbulence
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
071503
.
13.
Fancello
,
A.
,
Panek
,
L.
,
Lammel
,
O.
,
Krebs
,
W.
,
Bastiaans
,
R. J. M.
, and
de Goey
,
L. P. H.
,
2014
, “
Turbulent Combustion Modeling Using Flamelet-Generated Manifolds for Gas Turbine Applications in OpenFOAM
,”
ASME
Paper No. GT2014-26096.
14.
Patil
,
S.
, and
Tafti
,
D.
,
2012
, “
Wall Modeled Large Eddy Simulations of Complex High Reynolds Number Flows With Synthetic Inlet Turbulence
,”
Int. J. Heat Fluid Flow
,
33
(
1
), pp.
9
21
.
15.
Bilger
,
R.
,
1980
, “
Turbulent Flows With Nonpremixed Reactants
,”
Turbulent Reacting Flows
,
Springer
,
Berlin
, pp.
65
113
.
16.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge
, UK.
17.
Bray
,
K.
,
1980
, “
Turbulent Flows With Premixed Reactants
,”
Turbulent Reacting Flows
,
Springer
,
Berlin
, pp.
115
183
.
18.
Zimont
,
V.
,
Polifke
,
W.
, and
Bettelini
,
M.
,
1998
, “
An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure
,”
ASME J. Eng. Gas Turbines Power
,
120
(
3
), pp.
526
532
.
19.
Pierce
,
C.
, and
Moin
,
P.
,
2004
, “
Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion
,”
Fluid Mech.
,
504
, pp.
73
97
.
20.
Van Oijen
,
J.
, and
de Goey
,
L. P. H.
,
2002
, “
Modelling of Premixed Counterflow Flames Using the Flamelet-Generated Manifold Method
,”
Combust. Theory Modell.
,
6
(
3
), pp.
463
464
.
21.
Nguyen
,
P.
,
Vervisch
,
L.
,
Subramanian
,
V.
, and
Domingo
,
P.
,
2010
, “
Multi-Dimensional Flamelet-Generated Manifolds for Partially Premixed Combustion
,”
Combust. Flame
,
157
(
1
), pp.
43
61
.
22.
Lodier
,
G.
,
Vervisch
,
L.
,
Moureau
,
V.
, and
Domingo
,
P.
,
2010
, “
Composition-Space Premixed Flamelet Solution With Differential Diffusion for In Situ Flamelet-Generated Manifolds
,”
Combust. Flame
,
158
(
10
), pp.
2009
2016
.
23.
Goldin
,
G.
,
Ren
,
Z.
, and
Forkel
,
H.
,
2012
, “
Modeling CO With Flamelet-Generated Manifolds. Part 1: Flamelet Configuration
,”
ASME
Paper No. GT2012-69528.
24.
Goldin
,
G.
,
Ren
,
Z.
, and
Forkel
,
H.
,
2012
, “
Modeling CO With Flamelet-Generated Manifolds: Part 2—Application
,”
ASME
Paper No. GT2012-69546.
25.
Ramaekers
,
W.
,
Van Oijen
,
J.
, and
de Goey
,
L. P. H.
,
2010
, “
A Priori Testing of Flamelet Generated Manifolds for Turbulent Partially Premixed Methane/Air Flames
,”
Flow Turbul. Combust.
,
84
(
3
), pp.
439
458
.
26.
Patil
,
S.
, and
Montanari
,
F.
,
2015
, “
Reynolds-Averaged Navier–Stokes and Large-Eddy Simulation Investigation of Lean Premixed Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
137
(
12
), p.
121506
.
27.
Bilger
,
R. W.
,
Pope
,
S. B.
,
Bray
,
K. N. C.
, and
Driscoll
,
J. F.
,
2005
, “
Paradigms in Turbulent Combustion Research
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
21
42
.
28.
Peters
,
N.
,
1984
, “
Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
10
(
3
), pp.
319
339
.
29.
Peters
,
N.
,
1986
, “
Laminar Flamelet Concepts in Turbulent Combustion
,”
Symp. (Int.) Combust.
,
21
(
1
), pp.
1231
1250
.
30.
Jones
,
W.
, and
Whitelaw
,
J.
,
1982
, “
Calculation Methods for Reacting Turbulent Flows: A Review
,”
Combust. Flame
,
48
, pp.
1
26
.
31.
Bray
,
K.
, and
Peters
,
N.
,
1994
, “
Laminar Flamelets in Turbulent Flames
,”
P. A.
Libby
and
F. A.
Williams
, eds.,
Turbulent Reacting Flows
,
Academic Press
,
Cambridge
, pp.
63
114
.
32.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
33.
Zimont
,
V.
,
2000
, “
Gas Premixed Combustion at High Turbulence. Turbulent Flame Closure Model Combustion Model
,”
Exp. Therm. Fluid Sci.
,
21
(1–3), pp.
179
186
.
34.
Magnussen
,
B.
,
1981
, “
On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow
,”
19th Aerospace Sciences Meeting
, St. Louis, MO, Jan. 12–15,
AIAA
Paper No. 1981-42.
35.
Gran
,
I.
, and
Magnussen
,
B.
,
1996
, “
A Numerical Study of a Bluff-Body Stabilized Diffusion Flame. Part 2. Influence of Combustion Modeling and Finite-Rate Chemistry
,”
Combust. Sci. Technol.
,
119
(1–6), pp.
191
217
.
36.
Anonymous
,
2008
, “
Hochtemperaturverbrennung Messkampagne Eingeschlossene Jetflamme
,” DLR, Stuttgart, Germany.
37.
Anonymous
,
2008
, “
Messkampagne Eingeschlossene Jetflamme Zusatzliche Wasserstoffflammen—H2 PIV 90 m/s
,” DLR, Stuttgart, Germany.
38.
Anonymous
,
2008
, “
Messkampagne Eingeschlossene Jetflamme Zusatzliche Wasserstoffflammen—H2 Raman 90 m/s
,” DLR, Stuttgart, Germany
39.
ANSYS
,
2015
, “
ANSYS FLUENT Theory Guide
,” Release 15, Ansys Inc., Canonsburg, PA.
40.
Smith
,
G.
,
Golden
,
D.
, and
Frenklach
,
M.
,
1999
, “
GRI-Mech 3.0
,” University of California, Berlin, CA.
41.
Lammel
,
O.
,
Stohr
,
M.
,
Kutne
,
P.
,
Dem
,
C.
,
Meier
,
W.
, and
Aigner
,
M.
,
2011
, “
Experimental Analysis of Confined Jet Flames by Laser Measurement Techniques
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
041506
.
42.
Regele
,
D.
,
Jonathan
,
E.
,
Knudsen
,
H.
,
Pitsch
, and
Guillaume
,
B.
,
2013
, “
A Two-Equation Model for Non-Unity Lewis Number Differential Diffusion in Lean Premixed Laminar Flames
,”
Combust. Flame
,
160
(
2
), pp.
240
250
.
43.
Aspden
,
A.
,
Day
,
M.
, and
Bell
,
J.
,
2011
, “
Characterization of Low Lewis Number Flames
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1463
1471
.
You do not currently have access to this content.