This research investigated the effect of guide vanes into the intake runner of a diesel engine run with higher viscous biodiesel to enhance the in-cylinder intake airflow characteristics. First, simulation of an internal combustion engine base model was done. Guide vanes of various lengths were developed and imposed into the intake runner to investigate the airflow characteristics. Based on the simulation results, five guide vanes models of 8, 10, 12, 14, and 16 mm length were constructed and tested on a compression ignition (CI) engine run with biodiesel. According to the experimental results of engine performance and emissions, it was found that guide vanes of 12 mm length showed the highest number of improvements with 14 mm and 10 mm length showed the second and third highest number of improvements, respectively. Therefore, this research concluded that guide vanes successfully improved the in-cylinder air flow characteristics to improve the mixing of higher viscous biodiesel with air resulting in better performances of the engines than without vanes.

References

1.
Westbrook
,
C. K.
,
2013
, “
Biofuels Combustion
,”
Annu. Rev. Phys. Chem.
,
64
(
1
), pp.
201
219
.
2.
Fazal
,
M. A.
,
Haseeb
,
A. S. M. A.
, and
Masjuki
,
H. H.
,
2011
, “
Biodiesel Feasibility Study: An Evaluation of Material Compatibility; Performance; Emission and Engine Durability
,”
Renewable Sustainable Energy Rev.
,
15
(
2
), pp.
1314
1324
.
3.
Russo
,
D.
,
Dassisti
,
M.
,
Lawlor
,
V.
, and
Olabi
,
A. G.
,
2012
, “
State of the Art of Biofuels From Pure Plant Oil
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
4056
4070
.
4.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engines Fundamentals
,
McGraw-Hill
,
New York
.
5.
Pulkrabek
,
W. W.
,
2004
,
Engineering Fundamental of the Internal Combustion Engine
,
Pearson Prentice-Hall
,
Upper Saddle River, NJ
.
6.
Stone
,
R.
,
1999
,
Introduction to Internal Combustion Engines
,
McMillan Press
,
London, UK
.
7.
Bari
,
S.
,
2014
, “
Performance, Combustion and Emission Tests of a Metro-Bus Running on Biodiesel-ULSD Blended (B20) Fuel
,”
Appl. Energy
,
124
, pp.
35
43
.
8.
Bari
,
S.
,
2004
, “
Investigation Into the Deteriorated Performance of Diesel Engine After Prolonged Use of Vegetable Oil
,”
ASME
Paper No. ICEF2004-0955.
9.
Rambabu
,
V.
,
Prasad
,
V.
, and
Subramanyam
,
T.
,
2012
, “
Evaluation of Performance and Emissions of a VCR DI Diesel Engine Fuelled With Preheated CsME
,”
Global J. Res. Eng.
,
12
(
7-A
), pp.
11
19
.
10.
Ye
,
P.
, and
Boehman
,
A. L.
,
2012
, “
An Investigation of the Impact of Injection Strategy and Biodiesel on Engine NOx and Particulate Matter Emissions With a Common-Rail Turbocharged DI Diesel Engine
,”
Fuel
,
97
, pp.
476
488
.
11.
Bari
,
S.
, and
Roy
,
M. M.
,
1995
, “
Prospect of Rice Bran Oil as Alternative to Diesel Fuel
,”
Fifth International Conference on Small Engines, Their Fuels and the Environment
, Reading, UK, Apr. 5–7, pp.
31
36
.
12.
Currie
,
D.
, and
Lazich
,
I.
,
2011
, “
Air Supply System for an Internal Combustion Engine
,”
U.S. Patent No. US7926473 B2
.
13.
Xin
,
X.
,
Liu
,
D. X.
,
Wang
,
L. Q.
, and
Wang
,
L.
,
2012
, “
Influence of Variable Swirl Intake Manifolds for DI Diesel Engine on In-Cylinder Air Motion
,”
Appl. Mech. Mater.
,
130
, pp.
95
98
.
14.
Abe
,
K.
, and
Yoshimatsu
,
A.
,
2011
, “
Intake Port Structure of Internal Combustion Engine
,” U.S. Patent No. US7938099 B2.
15.
Sun
,
Z.
,
Li
,
X.
, and
Du
,
W.
,
2011
, “
Research on Swirler for Intake Induced Swirl in DI Diesel Engine
,”
2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring
(
CDCIEM
), Changsha, China, Feb. 19–20, pp.
275
279
.
16.
Cheng
,
T. Y.
,
2003
, “
Gas Swirling Device for Internal Combustion Engine
,”
U.S. Patent No. US6536420 B1
.
17.
Kim
,
J. S.
,
2006
, “
Fluid Swirling Device
,” U.S. Patent No. US7028663 B1.
18.
Shyh-Shyan
,
L.
, and
Yang
,
J.-C.
,
2000
, “
Intake Swirl Enhancing Structure for Internal Combustion Engine
,”
U.S. Patent No. US6041753 A
.
19.
Kim
,
J. S.
,
2003
, “
Fluid Swirling Device for an Internal Combustion Engine
,”
U.S. Patent No. US6796296 B2
.
20.
Kim
,
J. S.
,
2000
, “
Air Turbulence Generator of Internal Combustion Engines
,”
U.S. Patent No. US6158412 A
.
21.
Kim
,
S. Y.
,
1999
, “
Air Flow System for Internal Combustion Engine
,”
U.S. Patent No. US5947081 A
.
22.
Bari
,
S.
, and
Saad
,
I.
,
2013
, “
CFD Modelling of the Effect of Guide Vane Swirl and Tumble Device to Generate Better In-Cylinder Air Flow in a CI Engine Fuelled by Biodiesel
,”
Comput. Fluids
,
84
, pp.
262
269
.
23.
Saad
,
I.
, and
Bari
,
S.
,
2011
, “
Effects of Guide Vane Swirl and Tumble Device (GVSTD) to the Air Flow of Naturally Aspirated CI Engine
,” International Conference on Mechanical Engineering (ICME2011), Paris, July 27–29.
24.
ANSYS
,
2009
, “
Internal Combustion Engine
,”
ANSYS, Inc.
,
Canonsburg, PA
.
25.
Hino
,
2008
, “
Diesel Engines for Industrial-Use
,”
Hino Motors Ltd.
,
Tokyo, Japan
.
26.
Hino
,
2008
, “
Workshop Manual-W04D
,”
Hino Motors Ltd.
,
Tokyo, Japan
.
27.
An
,
H.
,
Yang
,
W.
,
Li
,
J.
,
Maghbouli
,
A.
,
Chua
,
K. J.
, and
Chou
,
S. K.
,
2014
, “
A Numerical Modeling on the Emission Characteristics of a Diesel Engine Fueled by Diesel and Biodiesel Blend Fuels
,”
Appl. Energy
,
130
(1), pp.
458
465
.
28.
Bottone
,
F.
,
Kronenburg
,
A.
,
Gosman
,
D.
, and
Marquis
,
A.
,
2012
, “
Large Eddy Simulation of Diesel Engine In-Cylinder Flow
,”
Flow, Turbul. Combust.
,
88
(1), pp.
233
253
.
29.
Sridhar
,
G.
,
Paul
,
P. J.
, and
Mukunda
,
H. S.
,
2004
, “
Simulation of Fluid Flow in a High Compression Ratio Reciprocating Internal Combustion Engine
,”
Proc. Inst. Mech. Eng.
,
218
(
6
), pp.
403
416
.
30.
ANSYS
,
2009
, “
CFX-Mesh
,”
ANSYS, Inc.
,
Canonsburg, PA
.
31.
Saad
,
I.
, and
Bari
,
S.
,
2013
, “
Improving Air-Fuel Mixing in Diesel Engine Fuelled by Higher Viscous Fuel Using Guide Vane Swirl and Tumble Device (GVSTD)
,”
SAE
Paper No. 2013-01-0867.
32.
Saad
,
I.
,
Bari
,
S.
, and
Hossain
,
S. N.
,
2013
, “
In-Cylinder Air Flow Characteristics Generated by Guide Vane Swirl and Tumble Device to Improve Air-Fuel Mixing in Diesel Engine Using Biodiesel
,”
Procedia Eng.
,
56
, pp.
363
368
.
33.
Gosavi
,
A.
,
2003
,
Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning
,
Kluwer Academic Publishers
,
Boston, MA
.
34.
Harun
,
M. I.
,
Ng
,
H. K.
, and
Gan
,
S.
,
2009
, “
Evaluation of CFD Sub-Models for In-Cylinder Light-Duty Diesel Engine Simulation
,”
3rd International Conference Energy and Environment
(
ICEE 2009
), Malacca, Malaysia, Dec. 7–8, pp.
272
278
.
35.
Saad
,
I.
, and
Bari
,
S.
,
2013
, “
Optimize Vane Length to Improve In-Cylinder Air Characteristic of CI Engine Using Higher Viscous Fuel
,”
Appl. Mech. Mater.
,
393
, pp.
293
298
.
36.
White
,
F. M.
,
2011
,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
37.
Tu
,
J.
,
2008
,
Computational Fluid Dynamics: A Practical Approach
,
Butterworth-Heinemann
,
Amsterdam, The Netherlands
.
38.
Payri
,
F.
,
Benajes
,
J.
,
Margot
,
X.
, and
Gil
,
A.
,
2004
, “
CFD Modeling of the In-Cylinder Flow in Direct-Injection Diesel Engines
,”
Comput. Fluids
,
33
(
8
), pp.
995
1021
.
39.
Prasad
,
B. V. V. S. U.
,
Sharma
,
C. S.
,
Anand
,
T. N. C.
, and
Ravikrishna
,
R. V.
,
2011
, “
High Swirl-Inducing Piston Bowls in Small Diesel Engines for Emission Reduction
,”
Appl. Energy
,
88
(
7
), pp.
2355
2367
.
40.
Miles
,
P. C.
,
2000
, “
The Influence of Swirl on HSDI Diesel Combustion at Moderate Speed and Load
,”
SAE
Paper No. 2000-01-1829.
41.
ANSYS
,
2009
, “
CFX-Solver Theory Guide
,”
ANSYS, Inc.
,
Canonsburg, PA
.
42.
Zuojin
,
Z.
,
Jianlei
,
N.
, and
Li
,
Y.
,
2014
, “
Swirling-Strength Based Large Eddy Simulation of Turbulent Flows Around a Single Square Cylinder at Low Reynolds Numbers
,”
Appl. Math. Mech. (Engl. Ed.)
,
35
(
8
), pp.
959
978
.
43.
Protech
,
2000
, “
Protech 4005 Exhaust Gas Analyzer Manual
,” Protech, Brisbane, Australia.
44.
Holman
,
J. P.
,
2011
,
Experimental Methods for Engineers
(
McGraw-Hill Series in Mechanical Engineering), McGraw-Hill
,
New York
.
45.
World Nuclear Association
,
2010
, “
Heat Values of Various Fuels
,” World Nuclear Association, London, UK.
46.
Australia Renewable Fuel Limited (ARfuels)
,
2013
, “
Material Safety Data Sheets (MSDS) and Specifications
,” Australia Renewable Fuel Limited, Melbourne, Australia.
47.
Xue
,
J.
,
Grift
,
T. E.
, and
Hansen
,
A. C.
,
2011
, “
Effect of Biodiesel on Engine Performances and Emissions
,”
Renewable Sustainable Energy Rev.
,
15
(
2
), pp.
1098
1116
.
48.
An
,
H.
,
Yang
,
W. M.
,
Chou
,
S. K.
, and
Chua
,
K. J.
,
2012
, “
Combustion and Emissions Characteristics of Diesel Engine Fueled by Biodiesel at Partial Load Conditions
,”
Appl. Energy
,
99
, pp.
363
371
.
49.
Labeckas
,
G.
, and
Slavinskas
,
S.
,
2006
, “
The Effect of Rapeseed Oil Methyl Ester on Direct Injection Diesel Engine Performance and Exhaust Emissions
,”
Energy Convers. Manage.
,
47
, pp.
1954
1967
.
50.
Fattah
, I
. M. R.
,
Masjuki
,
H. H.
,
Liaquat
,
A. M.
,
Ramli
,
R.
,
Kalam
,
M. A.
, and
Riazuddin
, V
. N.
,
2013
, “
Impact of Various Biodiesel Fuels Obtained From Edible and Non-Edible Oils on Engine Exhaust Gas and Noise Emissions
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
552
567
.
51.
Murugesan
,
A.
,
Umarani
,
C.
,
Subramanian
,
R.
, and
Nedunchezhian
,
N.
,
2009
, “
Bio-Diesel as an Alternative Fuel for Diesel Engines—A Review
,”
Renewable Sustainable Energy Rev.
,
13
(
3
), pp.
653
662
.
52.
Demirbas
,
A.
,
2009
, “
Political, Economic and Environmental Impacts of Biofuels: A Review
,”
Appl. Energy
,
86
(
Suppl. 1
), pp.
S108
S117
.
53.
Pleanjai
,
S.
,
Gheewala
,
S. H.
, and
Garivait
,
S.
,
2009
, “
Greenhouse Gas Emissions From Production and Use of Used Cooking Oil Methyl Ester as Transport Fuel in Thailand
,”
J. Cleaner Prod.
,
17
(
9
), pp.
873
876
.
54.
Karavalakis
,
G.
,
Bakeas
,
E.
,
Fontaras
,
G.
, and
Stournas
,
S.
,
2011
, “
Effect of Biodiesel Origin on Regulated and Particle-Bound PAH (Polycyclic Aromatic Hydrocarbon) Emissions From a Euro 4 Passenger Car
,”
Energy
,
36
(
8
), pp.
5328
5337
.
55.
Lumsden
,
D. G.
,
Eddleston
,
D.
, and
Sykes
,
R.
,
1997
, “
Comparing Lean Burn and EGR
,”
SAE
Paper No. 970505.
56.
Ibrahim
,
A.
, and
Bari
,
S.
,
2009
, “
Effect of Varying Compression Ratio on a Natural Gas SI Engine Performance in the Presence of EGR
,”
Energy Fuels
,
23
(
10
), pp.
4949
4956
.
57.
Hu
,
E.
,
Huang
,
Z.
,
Liu
,
B.
,
Zheng
,
J.
, and
Gu
,
X.
,
2009
, “
Experimental Study on Combustion Characteristics of a Spark-Ignition Engine Fueled With Natural Gas–Hydrogen Blends Combining With EGR
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
1035
1044
.
58.
Ibrahim
,
A.
,
Bari
,
S.
, and
Bruno
,
F.
,
2007
, “
A Study on EGR Utilization in Natural Gas SI Engines Using a Two-Zone Combustion Model
,”
SAE
Paper No. 2007-01-2041.
59.
Lertsathapornsuk
,
V.
,
Pairintra
,
R.
,
Aryusuk
,
K.
, and
Krisnangkura
,
K.
,
2008
, “
Microwave Assisted in Continuous Biodiesel Production From Waste Frying Palm Oil and Its Performance in a 100 kW Diesel Generator
,”
Fuel Process. Technol.
,
89
(
12
), pp.
1330
1336
.
You do not currently have access to this content.