This paper presented a numerical comparison of the sealing performance between conventional radial rim seal and new-designed honeycomb radial rim seal with three sealing flow rates. Three-dimensional unsteady Reynolds-averaged Navier–Stokes (URANS) equations, coupled with a fully developed shear stress transport (SST) turbulent model from ansys-cfx, were utilized to investigate the sealing effectiveness of rim seal and flow characteristics in the wheel-space of gas turbines. First, the numerical method for analysis the sealing performance of the rim seal was validated on the basis of published experimental data. Pressure distributions on the vane hub, sealing effectiveness distributions on the stator disk surface and swirl ratio distributions in the wheel-space of the experimental models were numerically computed and compared to the experimental data. The additional scalar variable was adopted in calculation to simulate the distribution of tracer gas concentration in experiment. The numerical results were in excellent agreement with experimental data. Then the sealing effectiveness of conventional and new-designed honeycomb radial rim seal are compared. The flow field in the wheel-space of the new-designed honeycomb and conventional turbine radial rim seal was illustrated and analyzed. Furthermore, three cases with different honeycomb cell depths were selected to investigate the influence of honeycomb cell depth on sealing performance of honeycomb radial rim seal. Compared with conventional radial rim seal, the honeycomb radial rim seal could improve the sealing effectiveness by 9–14% at the same sealing flow rate. The honeycomb cell depth has a pronounced effect on sealing performance of honeycomb radial rim seal. It shows that sealing effectiveness of the honeycomb radial rim seal increases with the increase of the honeycomb cell depth, as honeycomb cell depth increases from 1.6 mm to 4.8 mm, the sealing effectiveness is increased by about 8% at most. In addition, the flow pattern of the rim seal and wheel-space is provided to describe sealing flow characteristics.

References

References
1.
Johnson
,
B. V.
,
Mack
,
G. J.
,
Paolillo
,
R. E.
, and
Daniels
,
W.
,
1994
, “
Turbine Rim Seal Gas Path Flow Ingestion Mechanisms
,”
AIAA
Paper No. 94-2703.
2.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1983
, “
An Investigation of Ingress for an Air-Cooled Shrouded Rotating-Disk System With Radial Clearance Seals
,”
ASME J. Eng. Power
,
105
(
1
), pp.
178
183
.
3.
Wang
,
C. Z.
,
Johnson
,
B. V.
,
Jong
,
F.
,
Vashist
,
T. K.
, and
Dutta
,
R.
,
2006
, “
Comparison of Flow Characteristics in Axial-Gap Seals for Close-Spaced and Wide-Spaced Turbine Stages
,”
ASME
Paper No. GT2006-90965.
4.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
.
5.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.
6.
Owen
,
J. M.
,
Zhou
,
K.
,
Pountney
,
O.
,
Wilson
,
M.
, and
Lock
,
G.
,
2012
, “
Prediction of Ingress Through Turbine Rim Seals—Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
134
(
3
), p.
031012
.
7.
Owen
,
J. M.
,
Pountney
,
O.
, and
Lock
,
G.
,
2012
, “
Prediction of Ingress Through Turbine Rim Seals—Part II: Combined Ingress
,”
ASME J. Turbomach.
,
134
(
3
), p.
031013
.
8.
Johnson
,
B. V.
,
Jakoby
,
R.
,
Bohn
,
D. E.
, and
Cunat
,
D.
,
2009
, “
A Method for Estimating the Influence of Time-Dependent Vane and Blade Pressure Fields on Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
131
(
2
), p.
021005
.
9.
Kobayashi
,
N.
,
Matsumato
,
M.
, and
Shizuya
,
M.
,
1984
, “
An Experimental Investigation of a Gas Turbine Disk Cooling System
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
136
141
.
10.
Chew
,
J. W.
,
Dakhah
,
S.
, and
Turner
,
A. B.
,
1992
, “
Rim Sealing of Rotor–Stator Wheelspaces in the Absence of External Flow
,”
ASME J. Turbomach.
,
114
(
2
), pp.
433
438
.
11.
Roy
,
R. P.
,
Feng
,
J.
,
Narzary
,
D.
, and
Paolilo
,
R. E.
,
2005
, “
Experiment on Gas Ingestion Through Axial-Flow Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
573
582
.
12.
Gentihomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2003
, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.
13.
Eastwood
,
D.
,
Coren
,
D. D.
,
Long
,
C. A.
,
Scanlon
,
T. J.
, and
Guijarro-Valencia
,
A.
,
2012
, “
Experimental Investigation of Turbine Stator Well Rim Seal, Re-Ingestion and Interstage Seal Flows Using Gas Concentration Techniques and Displacement Measurements
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
082501
.
14.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
135
(2), p.
021012
.
15.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part II: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
135
(2), p.
021013
.
16.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Sconie
,
J. A.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part III: Single and Double Seals
,”
ASME J. Turbomach.
,
135
(
5
), p.
051011
.
17.
Sangan
,
C. M.
,
Scobie
,
J. A.
,
Owen
,
J. M.
,
Lock
,
G. D.
,
Tham
,
K. M.
, and
Laurello
,
V. P.
,
2014
, “
Performance of a Finned Turbine Rim Seal
,”
ASME J. Turbomach.
,
136
(
11
), p.
111008
.
18.
Zhou
,
D. W.
,
Roy
,
R. P.
,
Wang
,
C. Z.
, and
Glahn
,
J. A.
,
2011
, “
Main Gas Ingestion in a Turbine Stage for Three Rim Cavity Configurations
,”
ASME J. Turbomach.
,
133
(
3
), p.
031023
.
19.
Hills
,
N. J.
,
Chew
,
J. W.
, and
Turner
,
A. B.
,
2002
, “
Computational and Mathematical Modeling of Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
124
(
2
), pp.
306
315
.
20.
Cao
,
C.
,
Chew
,
J. W.
,
Millington
,
P. R.
, and
Hogg
,
S. I.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
786
793
.
21.
Teuber
,
R.
,
Li
,
Y.
,
Maltson
,
J.
,
Wilson
,
M.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2012
, “
Computational Extrapolation of Turbine Sealing Effectiveness From Test Rig to Engine Conditions
,”
Proc. Inst. Mech. Eng., Part A
,
227
(
2
), pp.
167
178
.
22.
Wang
,
C.
,
Mathiyalagan
,
S. P.
,
Johnson
,
B. V.
,
Glahn
,
J. A.
, and
Cloud
,
D. F.
,
2014
, “
Rim Seal Ingestion in a Turbine Stage From 360 Degree Time-Dependent Numerical Simulations
,”
ASME J. Turbomach.
,
136
(3), p.
031007
.
23.
Schrewe
,
S.
,
Werschnik
,
H.
, and
Schiffer
,
H. P.
,
2013
, “
Experimental Analysis of the Interaction Between Rim Seal and Main Annulus Flow in a Low Pressure Two Stage Axial Turbine
,”
ASME J. Turbomach.
,
135
(
5
), p.
051003
.
24.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structure of a High-Work Turbine
,”
ASME J. Turbomach.
,
132
(
2
), p.
021021
.
25.
Regina
,
K.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2015
, “
Experimental Investigation of Purge Flow Effects on a High Pressure Turbine Stage
,”
ASME J. Turbomach.
,
137
(4), p.
041006
.
26.
Popovic
,
I.
, and
Hodson
,
H. P.
,
2013
, “
Improving Turbine Stage Efficiency and Sealing Effectiveness Through Modifications of the Rim Seal Geometry
,”
ASME J. Turbomach.
,
135
(
6
), p.
061016
.
27.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
313
349
.
28.
Rai
,
M. M.
,
1989
, “
Three-Dimensional Navier–Stokes Simulations of Turbine Rotor–Stator Interaction, Part 1: Methodology
,”
AIAA J. Propul. Power
,
5
(
3
), pp.
305
311
.
29.
Sun
,
H.
,
Li
,
J.
,
Song
,
L.
, and
Feng
,
Z.
,
2014
, “
Non-Axisymmetric Turbine Endwall Aerodynamic Optimization Design: Part I: Turbine Cascade Design and Experimental Validations
,”
ASME
Paper No. GT2014-25362.
You do not currently have access to this content.