Solid particle ingestion is one of the principal degradation mechanisms in the compressor section of heavy-duty gas turbines. Usually, foulants in the ppm range, not captured by the air filtration system, i.e., (0–2) μm cause deposits on blading and result in a severe performance drop of the compressor. It is of great interest to the industry to determine which areas of the compressor airfoils are interested by these contaminants as a function of the location of the power unit. The aim of this work is the estimation of the actual deposits on the blade surface in terms of location and quantity. The size of the particles, their concentrations, and the filtration efficiency are specified in order to perform a realistic quantitative analysis of the fouling phenomena in an axial compressor. This study combines, for the first time, the impact/adhesion characteristic of the particles obtained through a computational fluid dynamics (CFD) and the real size distribution of the contaminants in the air swallowed by the compressor. The blade zones affected by the deposits are clearly reported by using easy-to-use contaminant maps realized on the blade surface in terms of contaminant mass. The analysis showed that particular fluid-dynamic phenomena such as separation, shock waves, and tip leakage vortex strongly influence the pattern deposition. The combination of the smaller particles (0.15 μm) and the larger ones (1.50 μm) determines the highest amounts of deposits on the leading edge (LE) of the compressor airfoil. From these analyses, some guidelines for proper installation and management of the power plant (in terms of filtration systems and washing strategies) can be drawn.

References

References
1.
Kurz
,
R.
, and
Brun
,
K.
,
2012
, “
Fouling Mechanism in Axial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032401
.
2.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
,
1995
, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
117
(
4
), pp.
491
505
.
3.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
455
463
.
4.
Kurz
,
R.
,
Brun
,
K.
,
Meher-Homji
,
C.
, and
Moore
,
J.
,
2012
, “
Gas Turbine Performance and Maintenance
,”
41st Turbomachinery Symposium
, Houston, TX, Sept. 24–27.
5.
Vigueras
,
Z.
, and
Marco
,
O.
,
2007
, “
Analysis of Gas Turbine Compressor Fouling and Washing on Line
,” Ph.D. thesis,
Cranfield University
,
Cranfield, UK
.
6.
Brice
,
T.
, “
Atmospheric Aerosols: Physical Properties; Chemical Composition; Health & Environmental Effects
,” Department of Chemistry,
University College Cork
,
Cork, Ireland
.
7.
,
S.
,
Zhang
,
R.
,
Yao
,
Z.
,
Yi
,
F.
,
Ren
,
J.
,
Wu
,
M.
,
Feng
,
M.
, and
Wang
,
Q.
,
2012
, “
Size Distribution of Chemical Elements and Their Source Apportionment in Ambient Coarse, Fine, and Ultrafine Particles in Shanghai Urban Summer Atmosphere
,”
J. Environ. Sci.
,
24
(
5
), pp.
882
890
.
8.
Lu
,
S.
,
Yi
,
F.
,
Hao
,
X.
,
Yu
,
S.
,
Ren
,
J.
,
Wu
,
M.
,
Jialiang
,
F.
,
Yonemochi
,
S.
, and
Wang
,
Q.
,
2013
, “
Physicochemical Properties and Ability to Generate Free Radicals of Ambient Coarse, Fine, and Ultrafine Particles in the Atmosphere of Xuanwei, China, an Area of High Lung Cancer Incidence
,”
Atmos. Environ.
,
97
, pp.
519
528
.
9.
Wilcox
,
M.
,
Baldwin
,
R.
,
Garcia-Hernandez
,
A.
, and
Brun
,
K.
,
2010
, “
Guideline for Gas Turbine Inlet Air Filtration Systems
,” Gas Machinery Research Council, Southwest Research Institute, San Antonio, TX, Release 1.0.
10.
Tarabrin
,
W. P.
,
Schurovsky
,
V. A.
,
Bodrov
,
A. I.
, and
Stalder
,
J.-P.
,
1998
, “
Influence of Axial Compressor Fouling on Gas Turbine Unit Performance Based on Different Schemes and With Different Initial Parameters
,”
ASME
Paper No. 98-GT-416.
11.
Syverud
,
E.
,
Brekke
,
O.
, and
Bakken
,
L. E.
,
2005
, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME
Paper No. GT2005-68701.
12.
Parker
,
G. J.
, and
Lee
,
P.
,
1972
, “
Studies of the Deposition of Sub-Micron Particles on Turbine Blades
,”
Proc. Inst. Mech. Eng.
,
186
(
1
), pp.
519
526
.
13.
Elrod
,
C. E.
, and
Bettner
,
J. L.
,
1983
, “
Experimental Verification of an Endwall Boundary Layer Prediction Method
,” NATO Advisory Group for Aerospace and Development, Neuilly-sur-Seine, France, Report No. AGARD CP-351.
14.
Tarabrin
,
A. P.
,
Schurovsky
,
V. A.
,
Boldrov
,
A. I.
, and
Stalder
,
J.-P.
,
1998
, “
An Analysis of Axial Compressor Fouling and a Blade Cleaning Method
,”
ASME J. Turbomach.
,
120
(
2
), pp.
256
261
.
15.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2014
, “
Quantitative CFD Analyses of Particle Deposition on a Transonic Axial Compressor Blade—Part II: Impact Kinematics and Particle Sticking Analysis
,”
ASME J. Turbomach.
,
137
(
2
), p.
021009
.
16.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2014
, “
Quantitative CFD Analyses of Particle Deposition on a Transonic Axial Compressor Blade—Part I: Particle Zones Impact
,”
ASME J. Turbomach.
,
137
(
2
), p.
021010
.
17.
Poppe
,
T.
,
Blum
,
J.
, and
Henning
,
T.
,
2000
, “
Analogous Experiments on the Stickiness of Micron-Sized Preplanetary Dust
,”
Astrophys. J.
,
533
(
1
), pp.
454
471
.
18.
Ahluwalia
,
R. K.
,
Im
,
K. M.
, and
Wenglarz
,
R. A.
,
1989
, “
Flyash Adhesion in Simulated Coal-Fired Gas Turbine Environment
,”
ASME J. Eng. Gas Turbines and Power
,
111
(
4
), pp.
672
678
.
19.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2011
, “
Numerical Analysis of the Effects of Non-Uniform Surface Roughness on Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
072402
.
20.
Aldi
,
N.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Venturini
,
M.
,
2014
, “
Performance Evaluation of Non-Uniformly Fouled Axial Compressor Stages by Means of Computational Fluid Dynamics Analyses
,”
ASME J. Turbomach.
,
136
(
2
), p.
021016
.
You do not currently have access to this content.