The ability to quantify leakage flow and windage heating for labyrinth seals with honeycomb lands is critical in understanding gas turbine engine system performance and predicting its component life. Variety of labyrinth seal configurations (number of teeth, stepped or straight, honeycomb cell size) are in use in gas turbines, and for each configuration, there are many geometric factors that can impact a seal's leakage and windage characteristics. This paper describes the development of a numerical methodology aimed at studying the effect of honeycomb lands on leakage and windage heating. Specifically, a three-dimensional computational fluid dynamics (CFD) model is developed utilizing commercial finite volume-based software incorporating the renormalization group (RNG) k-ε turbulence model with modified Schmidt number. The modified turbulence model is benchmarked and fine-tuned based on several experiments. Using this model, a broad parametric study is conducted by varying honeycomb cell size, pressure ratio (PR), and radial clearance for a four-tooth straight-through labyrinth seal. The results show good agreement with available experimental data. They further indicate that larger honeycomb cells predict higher seal leakage and windage heating at tighter clearances compared to smaller honeycomb cells and smooth lands. However, at open seal clearances larger honeycomb cells have lower leakage compared to smaller honeycomb cells.

References

References
1.
Engineering Science Data Unit,
2009
, “
Labyrinth Seal Flow
,”
IHS ESDU
, Denver, CO, Document No. ESDU 09004.
2.
Morrison
,
G. L.
,
Johnson
,
M. C.
, and
Tatterson
,
G. B.
,
1991
, “
3-D Laser Anemometer Measurements in a Labyrinth Seal
,”
ASME J. Gas Turbines Power
,
113
(
1
), pp.
119
125
.
3.
McGreeham
,
W. F.
, and
Ko
,
S. H.
,
1989
, “
Power Dissipation in Smooth and Honeycomb Labyrinth Seals
,”
ASME
Paper No. 89-GT-220.
4.
Rhode
,
D.
, and
Allen
,
B.
,
2001
Measurement and Visualization of Leakage Effects of Rounded Teeth Tips and Rub-Grooves on Stepped Labyrinths
,”
ASME J. Gas Turbines Power
,
123
(
3
), pp.
604
611
.
5.
Waschka
,
W.
,
Wittig
,
S.
, and
Kim
,
S.
,
1992
, “
Influence of High Rotational Speeds on Heat Transfer and Discharge Coefficient in Labyrinth Seals
,”
ASME J. Turbomach.
,
114
(
2
), pp.
462
468
.
6.
Willenborg
,
K.
,
Kim
,
S.
, and
Wittig
,
S.
,
2001
, “
Effects of Reynolds Number and Pressure Ratio on Leakage Loss and Heat Transfer in a Stepped Labyrinth Seal
,”
ASME J. Turbomach.
,
123
(
4
), pp.
815
822
.
7.
Prasad
,
B.
,
Sethu Manavalan
,
V.
, and
Nanjunda Roa
,
N.
,
1997
, “
Computational and Experimental Investigations of Straight Through Labyrinth Seals
,”
ASME
Paper No. 97-GT-326.
8.
Wittig
,
S.
,
Schelling
,
U.
,
Kim
,
S.
, and
Jacobsen
,
K.
,
1987
, “
Numerical Predictions and Measurements of Discharge Coefficients in Labyrinth Seals
,”
ASME
Paper No. 87-GT-188.
9.
Meyer
,
C.
, and
Lowrie
,
J.
,
1975
, “
The Leakage Through Straight and Slant Labyrinths and Honeycomb Seals
,”
ASME J. Gas Turbines Power
,
96
(
4
), pp.
495
502
.
10.
Komotori
,
K.
, and
Miyake
,
K.
,
1977
, “
Leakage Characteristics of Labyrinth Seals With High Rotational Speed
,” Tokyo Joint Gas Turbine Congress, Tokyo, May 22–27.
11.
Stocker
,
H. L.
,
Cox
,
D. M.
, and
Holle
,
G. F.
,
1977
, “
Aerodynamic Performance of Conventional and Advanced Design Labyrinth Seals With Solid-Smooth, Abradable and Honeycomb Lands
,”
NASA
Lewis Research Center, Cleveland, OH, Report No. NASA-CR-135307.
12.
Zimmermann
,
H.
, and
Wolff
,
K. H.
,
1988
, “
Air System Correlations. Part 1: Labyrinth Seals
,”
ASME
Paper No. 98-GT-206.
13.
Brownell
,
J. B.
,
Millward
,
J. A.
, and
Parker
,
R. J.
,
1989
, “
Non-Intrusive Investigations Into Life-Size Labyrinth Seal Flow Fields
,”
ASME J. Gas Turbines Power
,
111
(
2
), pp.
335
342
.
14.
Childs
,
D.
,
Elrod
,
D.
, and
Hale
,
K.
,
1989
, “
Annular Honeycomb Seals: Test Results for Leakage and Rotordynamic Coefficients; Comparison to Labyrinth and Smooth Configurations
,”
ASME J. Tribol.
,
111
(
2
), pp.
293
301
.
15.
Ha
,
T.
, and
Childs
,
D.
,
1992
, “
Friction Factor Data for Flat Plate Tests of Smooth and Honeycomb Surfaces
,”
ASME J. Tribol.
,
114
(
4
), pp.
722
730
.
16.
Ha
,
T. W.
,
Morrison
,
G. L.
, and
Childs
,
D. W.
,
1992
, “
Friction-Factor Characteristics for Narrow Channels With Honeycomb Surfaces
,”
ASME J. Tribol.
,
114
(
4
), pp.
714
721
.
17.
Millward
,
J. A.
, and
Edwards
,
M. F.
,
1996
, “
Windage Heating of Air Passing Through Labyrinth Seals
,”
ASME J. Turbomach.
,
118
(
2
), pp.
414
419
.
18.
Schramm
,
V.
,
Wllenborg
,
K.
,
Kim
,
S.
, and
Wittig
,
S.
,
2002
, “
Influence of a Honeycomb Facing on the Flow Through a Stepped Labyrinth Seal
,”
ASME J. Gas Turbines Power
,
124
(
1
), pp.
140
146
.
19.
Dong-Chung
,
C.
, and
Rhode
,
D.
,
2003
, “
Development of a 2-D CFD Approach for Computing 3-D Honeycomb Labyrinth Seal Leakage
,”
ASME
Paper No. GT2003-38238.
20.
Collins
,
D.
,
Teixeira
,
J.
,
Crudgington
,
P.
, and
Ivey
,
P.
,
2006
, “
Numerical Modelling of Three Dimensional Honeycomb Labyrinth Seals Employing a Simplified Approach
,”
ASME
Paper No. GT-2006-90850.
21.
Yan
,
X.
,
Li
,
J.
,
Song
,
L. M.
, and
Feng
,
Z. P.
,
2009
, “
Investigations on the Discharge and Total Temperature Increase Characteristics of the Labyrinth Seals With Honeycomb and Smooth Lands
,”
ASME J. Turbomach.
,
131
(
4
), p.
041009
.
22.
Yan
,
X.
,
Li
,
J.
, and
Feng
,
Z.
,
2010
, “
Effects of Inlet Preswirl and Cell Diameter and Depth on Honeycomb Seal Characteristics
,”
ASME J. Gas Turbines Power
,
132
(
12
), p.
122506
.
23.
Tipton
,
D.
,
Scott
,
T.
, and
Vogel
,
R.
,
1986
, “
Labyrinth Seal Analysis. Volume III: Analytical and Experimental Development of Design Model for Labyrinth Seals
,” Allision Gas Turbine Division, General Motors Corporation, Indianapolis, IN, Technical Report No. AFWAL-TR-85-2103.
24.
Denecke
,
J.
,
Dullenkopf
,
K.
,
Wittig
,
S.
, and
Bauer
,
H. J.
,
2005
, “
Experimental Investigation of Total Temperature Increase and Swirl Development in Rotating Labyrinth Seals
,”
ASME
Paper No. GT2005-68677.
25.
Denecke
,
J.
,
Farber
,
J.
,
Dullenkopf
,
K.
, and
Bauer
,
H. J.
,
2008
, “
Interdependence of Discharge Behavior, Swirl Development and Total Temperature Increase in Rotating Labyrinth Seals
,”
ASME
Paper No. GT2008-51429.
26.
Hodkinson
,
B.
,
1940
, “
Estimation of Leakage Through a Labyrinth Gland
,”
Proc. Inst. Mech. Eng.
141
(
1
), pp.
283
288
.
27.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
28.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
,
4
(
7
), pp.
1510
1520
.
You do not currently have access to this content.