Oxidation performance of thermal barrier coatings (TBCs) deposited by the axial suspension plasma spraying (ASPS) method was evaluated under isothermal and cyclic conditions with a peak temperature of 1080 °C. The TBC systems are based on two nickel-based superalloy substrates (CMSX-4 and IN738LC), platinum aluminide bond coat (BC), and yttria-stabilized zirconia (8YSZ) top coat (TC) of either vertically cracked (VC) or columnar structure. Samples with IN738LC substrate exhibited longer isothermal oxidation lives whereas the ones with CMSX-4 substrate showed greater cyclic oxidation lives. Outward diffusion of W and Ta in TBC systems containing CMSX-4 was found to have progressed to the interface between thermally grown oxide (TGO) and TC; this has contributed to the reduced isothermal oxidation life. The longer cyclic oxidation lives of TBC systems with CMSX-4 were attributed to less coefficient and thermal expansion (CTE) mismatch between coating layers (reduced strain energy) and better creep resistance of diffusional BC on CMSX-4, hence less TGO rumpling. TBC systems with columnar YSZ had longer isothermal oxidation lives while those with VC YSZ seemed to result in longer cyclic lives.

References

1.
Clarke
,
D. R.
,
Oechsner
,
M.
, and
Padture
,
N.
,
2012
, “
Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines
,”
MRS Bull.
,
37
(
10
), pp.
891
898
.
2.
Milas
,
I.
,
Hinnemann
,
B.
, and
Carter
,
E.
,
2011
, “
Diffusion of Al, O, Pt, Hf and Y Atoms on α-Al2O3 (0001): Implications for the Role of Alloying Elements in Thermal Barrier Coatings
,”
J. Mater. Chem.
,
21
(
5
), pp.
1447
1456
.
3.
Chen
,
Y.
,
Reed
,
R. C.
, and
Marguis
,
E. A.
,
2012
, “
As-Coated Thermal Barrier Coating: Structure and Chemistry
,”
Scr. Mater.
,
67
(
9
), pp.
779
782
.
4.
Wang
,
D.
,
Peng
,
H.
,
Gong
,
S.
, and
Guo
,
H.
,
2014
, “
NiAlHf/Ru: Promising Bond Coat Materials in Thermal Barrier Coatings for Advanced Single Crystal Superalloys
,”
Corros. Sci.
,
78
, pp.
304
312
.
5.
Wang
,
Y.
,
Smialek
,
J.
, and
Suneson
,
M.
,
2014
, “
Oxidation Behaviour of Hf-Modified Aluminide Coatings on Inconel 718 at 1050 °C
,”
J. Coat. Sci. Tech.
,
1
(1), pp.
25
45
.
6.
Evans
,
A. G.
,
He
,
M. Y.
, and
Hutchinson
,
J. W.
,
2001
, “
Mechanics-Based Scaling Laws for the Durability of Thermal Barrier Coatings
,”
Prog. Mater. Sci.
,
46
(
3
), pp.
249
271
.
7.
Daroonparvar
,
M.
,
Yajid
,
A. M.
,
Yusof
,
N. M.
,
Hussain
,
M. C.
, and
Bakhsheshi-Rad
,
H. R.
,
2013
, “
Formation of a Dense and Continuous Al2O3 Layer in Nano Thermal Barrier Coating Systems for the Suppression of Spinel Growth on the Al2O3 Oxide Scale During Oxidation
,”
J. Alloys Compd.
,
571
, pp.
205
220
.
8.
Wu
,
R. T.
,
Kawagishi
,
K.
,
Harada
,
H.
, and
Reed
,
R. C.
,
2008
, “
The Retention of Thermal Barrier Coating Systems on Single-Crystal Superalloys: Effects of Substrate Composition
,”
Acta Mater.
,
56
(
14
), pp.
3622
3629
.
9.
Tang
,
Z.
,
Kim
,
H.
,
Yaroslavski
,
I.
,
Masindo
,
G.
,
Celler
,
Z.
, and
Ellsworth
,
D.
,
2011
, “
Novel Thermal Barrier Coatings Produced by Axial Suspension Plasma Spray
,”
International Thermal Spray Conference and Exposition
(
ITSC 2011
),
Hamburg, Germany
, Sept. 27–29.
10.
Begley
,
M. R.
, and
Wadley
,
H. N. G.
,
2012
, “
Delamination Resistance of Thermal Barrier Coatings Containing Embedded Ductile Layer
,”
Acta Mater.
,
60
(6–7), pp.
2497
2508
.
11.
Pint
,
B. A.
,
Haynes
,
J. A.
, and
Zhang
,
Y.
,
2010
, “
Effect of Superalloy Substrate and Bond Coating on TBC Lifetime
,”
Surf. Coat. Technol.
,
205
(
5
), pp.
1236
1240
.
12.
Wu
,
R. T.
,
Kawagishi
,
K.
,
Harada
,
H.
, and
Reed
,
R. C.
,
2008
, “
An Investigation of the Compatibility of Nickel-Based Single Crystal Superalloys With Thermal Barrier Coating Systems
,” 11th International Symposium on Superalloys (
Superalloys 2008
), Champion, PA, Sept. 14–18, TMS, pp.
769
775
.
13.
Schulz
,
U.
,
Menzebach
,
M.
,
Leyens
,
C.
, and
Yang
,
Y. Q.
,
2001
, “
Influence of Substrate Material on Oxidation Behavior and Cyclic Lifetime of EB-PVD TBC Systems
,”
Surf. Coat. Technol.
,
146–147
, pp.
117
123
.
14.
Munawar
,
A. U.
,
Schulz
,
U.
,
Cerri
,
G.
, and
Lau
,
H.
,
2014
, “
Substrate Effect on the Lifetime of EB-PVD TBC Systems With 7YSZ and GDZ as Ceramic Top Coat Materials
,”
ASME
Paper No. GT2014-25444.
15.
Wu
,
R. T.
, and
Reed
,
R. C.
,
2008
, “
On the Compatibility of Single Crystal Superalloys With a Thermal Barrier Coating System
,”
Acta Mater.
,
56
(
3
), pp.
313
323
.
16.
Tawancy
,
H. M.
,
Mohamed
,
A. I.
,
Abbas
,
N. M.
,
Jones
,
R. E.
, and
Rickerby
,
D. S.
,
2003
, “
Effect of Superalloy Substrate Composition on the Performance of a Thermal Barrier Coating System
,”
J. Mater. Sci.
,
38
(
18
), pp.
3797
3807
.
17.
Cheruvu
,
N. S.
,
Chan
,
K. S.
, and
Gandy
,
D. W.
,
2008
, “
Effect of Time and Temperature on TBC Failure Mode Under Oxidizing Environment
,”
ASME
Paper No. GT2008-51528.
18.
Quested
,
P. N.
,
Brooks
,
R. F.
,
Chapman
,
L.
,
Morrell
,
R.
,
Youssef
,
Y.
, and
Mills
,
K. C.
,
2009
, “
Measurement and Estimation of Thermophysical Properties of Nickel Based Superalloys
,”
Mater. Sci. Technol.
,
25
(
2
), pp.
154
162
.
19.
Han
,
M.
,
Huang
,
J.
, and
Chen
,
S.
,
2014
, “
Behavior and Mechanism of the Stress Buffer Effect of the Inside Ceramic Layer to the Top Ceramic Layer in a Double-Ceramic-Layer Thermal Barrier Coating
,”
Ceram. Int.
,
40
(
2
), pp.
2901
2914
.
20.
Erickson
,
G. L.
,
1996
, “
The Development of the CMSX-11B and CMSX-11C Alloys for Industrial Gas Turbine Application
,” Eighth International Symposium on Superalloys (
Superalloys 1996
), Champion, PA, Sept. 22–26, TMS, pp.
45
52
.
You do not currently have access to this content.