Thermomechanical fatigue (TMF) crack growth modeling has been conducted on Inconel 718 with dwell time at maximum load. A history dependent damage model taking dwell damage into account, developed under isothermal conditions, has been extended for TMF conditions. Parameter determination for the model is carried out on isothermal load controlled tests at 550–650 °C for surface cracks, which later have been used to extrapolate parameters used for TMF crack growth. Further, validation of the developed model is conducted on a notched specimen subjected to strain control at 50–550 °C. Satisfying results are gained within reasonable scatter level compared for test and simulated number of cycles to failure.

References

References
1.
Ghonem
,
H.
,
Nicholas
,
T.
, and
Pineau
,
A.
,
1993
, “
Elevated Temperature Fatigue Crack Growth in Alloy 718—Part I: Effects of Mechanical Variables
,”
Fatigue Fract. Eng. Mater. Struct.
,
16
(
5
), pp.
565
576
.
2.
Branco
,
C. M.
, and
Byrne
,
J.
,
1994
, “
Fatigue Behaviour of the Nickel-Based Superalloy IN718 at Elevated Temperature
,”
Mater. High Temp.
,
12
(
4
), pp.
261
267
.
3.
Molins
,
R.
,
Hochstetter
,
G.
,
Chassaigne
,
J. C.
, and
Andrieu
,
E.
,
1997
, “
Oxidation Effects on the Fatigue Crack Growth Behaviour of Alloy 718 at High Temperature
,”
Acta Mater.
,
45
(
2
), pp.
663
674
.
4.
Andrieu
,
E.
,
Molins
,
R.
,
Ghonem
,
H.
, and
Pineau
,
A.
,
1992
, “
Intergranular Crack Tip Oxidation Mechanism in a Nickel-Based Superalloy
,”
Mater. Sci. Eng., A
,
154
(
1
), pp.
21
28
.
5.
Antunes
,
F. V.
,
Ferreira
,
J. M.
,
Branco
,
C. M.
, and
Byrne
,
J.
,
2000
, “
High Temperature Fatigue Crack Growth in Inconel 718
,”
Mater. High Temp.
,
17
(
4
), pp.
439
448
.
6.
Bika
,
D.
,
Pfaendtner
,
J. A.
,
Menyhard
,
M.
, and
McMahon
,
C. J.
, Jr.
,
1995
, “
Sulfur-Induced Dynamic Embrittlement in a Low-Alloy Steel
,”
Acta Metall. Mater.
,
43
(
5
), pp.
1895
1908
.
7.
Pfaendtner
,
J. A.
, and
McMahon
,
C. J.
, Jr.
,
2001
, “
Oxygen-Induced Intergranular Cracking of a Ni-Base Alloy at Elevated Temperatures—An Example of Dynamic Embrittlement
,”
Acta Mater.
,
49
(
16
), pp.
3369
3377
.
8.
Woodford
,
D. A.
,
2006
, “
Gas Phase Embrittlement and Time Dependent Cracking of Nickel Based Superalloys
,”
Energy Mater.
,
1
(
1
), pp.
59
79
.
9.
Krupp
,
U.
,
2005
, “
Dynamic Embrittlement—Time-Dependent Quasi-Brittle Intergranular Fracture at High Temperatures
,”
Int. Mater. Rev.
,
50
(
2
), pp.
83
97
.
10.
Saxena
,
A.
,
Williams
,
R. S.
, and
Shih
,
T. T.
,
1981
, “
A Model for Representing and Predicting the Influence of Hold Time on Fatigue Crack Growth Behavior at Elevated Temperature
,” 13th National Symposium on Fracture Mechanics, Philadelphia, June 16–18, 1980, ASTM STP 743, pp.
86
99
.
11.
Larsen
,
J. M.
, and
Nicholas
,
T.
,
1983
, “
Load Sequence Crack Growth Transients in a Superalloy at Elevated Temperature
,”
14th National Symposium on Fracture Mechanics
, Los Angeles, June 30–July 2, ASTM STP 791, pp.
II-536
II-552
.
12.
Nicholas
,
T.
, and
Weerasooriya
,
T.
,
1986
, “
Hold-Time Effects in Elevated Temperature Fatigue Crack Propagation
,” 17th National Symposium on Fracture Mechanics, Albany, NY, Aug. 7–9, 1984, ASTM STP 905, pp. 155–168.
13.
Gayda
,
J.
,
Gabb
,
T. P.
, and
Miner
,
R. V.
,
1988
, “
Fatigue Crack Propagation of Nickel-Base Superalloys at 650 °C
,”
Low Cycle Fatigue,
ASTM International, West Conshohocken, PA, Paper No. ASTM STP 942, pp.
293
309
.
14.
Van Stone
,
R. H.
, and
Slavik
,
D. C.
,
2000
, “
Prediction of Time Dependent Crack Growth With Retardation Effects in Nickel Base Alloys
,”
Fatigue and Fracture Mechanics
, Vol.
31
, ASTM STP 1389, ASTM International, West Conshohocken, PA, pp.
405
426
.
15.
Zheng
,
D.
, and
Ghonem
,
H.
,
1991
, “
Oxidation-Assisted Fatigue Crack Growth Behavior in Alloy 718—Part II. Applications
,”
Fatigue Fract. Eng. Mater. Struct.
,
14
(
7
), pp.
761
768
.
16.
Kruch
,
S.
,
Prigent
,
P.
, and
Chaboche
,
J. L.
,
1994
, “
A Fracture Mechanics Based Fatigue-Creep-Environment Crack Growth Model for High Temperature
,”
Int. J. Pressure Vessels Piping
,
59
(
1–3
), pp.
141
148
.
17.
Gallerneau
,
F.
,
Kruch
,
S.
, and
Kanouté
,
P.
,
2001
, “
A New Modelling of Crack Propagation With Fatigue-Creep-Oxidation Interaction Under Non Isothermal Loading
,”
Symposium on Ageing Mechanisms and Control: Part B—Monitoring and Management of Gas Turbine Fleets for Extended Life and Reduced Costs
,
Manchester
, Oct. 8–11.
18.
Gustafsson
,
D.
, and
Lundström
,
E.
,
2013
, “
High Temperature Fatigue Crack Growth Behaviour of Inconel 718 Under Hold Time and Overload Conditions
,”
Int. J. Fatigue
,
48
, pp.
178
186
.
19.
Lundström
,
E.
,
Simonsson
,
K.
,
Gustafsson
,
D.
, and
Månsson
,
T.
,
2014
, “
A Load History Dependent Model for Fatigue Crack Propagation in Inconel 718 Under Hold Time Conditions
,”
Eng. Fract. Mech.
,
118
, pp.
17
30
.
20.
Moverare
,
J. J.
, and
Gustafsson
,
D.
,
2011
, “
Hold-Time Effect on the Thermo-Mechanical Fatigue Crack Growth Behaviour of Inconel 718
,”
Mater. Sci. Eng., A
,
528
(
29–30
), pp.
8660
8670
.
21.
Jacobsson
,
L.
,
Persson
,
C.
, and
Melin
,
S.
,
2009
, “
Thermo-Mechanical Fatigue Crack Propagation Experiments in Inconel 718
,”
Int. J. Fatigue
,
31
(
8–9
), pp.
1318
1326
.
22.
Pretty
,
C. J.
,
Whittaker
,
M. T.
, and
Williams
,
S. J.
,
2014
, “
Crack Growth of a Polycrystalline Nickel Alloy Under TMF Loading
,”
Adv. Mater. Res.
,
891–892
, pp.
1302
1307
.
23.
Barker
,
V. M.
,
Johnson
,
W. S.
,
Adair
,
B. S.
, and
Antolovich
,
S. D.
,
2013
, “
Load and Temperature Interaction Modeling of Fatigue Crack Growth in a Ni-Base Superalloy
,”
Int. J. Fatigue
,
52
, pp.
91
105
.
24.
Newman
,
J. C.
, Jr.
, and
Raju
,
I. S.
,
1984
, “
Stress-Intensity Factor Equations for Cracks in Three-Dimensional Finite Bodies Subjected to Tension and Bending Loads
,”
NASA
Langley Research Center, Hampton, VA, Technical Memorandum No. 85793.
25.
Storgärds
,
E.
, and
Simonsson
,
K.
,
2015
, “
Crack Length Evaluation for Cyclic and Sustained Loading at High Temperature Using Potential Drop
,”
Exp. Mech.
,
55
(
3
), pp.
559
568
.
26.
Lenets
,
Y. N.
,
2012
, “
Practical Aspects of Fatigue Crack Growth in Aero-GTE Applications
,”
ASME
Paper No. GT2012-68736.
27.
ASTM
,
2008
, “
Standard Test Method for Measurement of Fatigue Crack Growth Rates
,”
ASTM International
,
West Conshohocken, PA
,
ASTM
Standard E647-08.
28.
Lundström
,
E.
,
Simonsson
,
K.
,
Månsson
,
T.
, and
Gustafsson
,
D.
,
2014
, “
Modelling of Fatigue Crack Growth in Inconel 718 Under Hold Time Conditions—Application to a Flight Spectrum
,”
Adv. Mater. Res.
,
891–892
, pp.
759
764
.
29.
Gustafsson
,
D.
,
Lundström
,
E.
, and
Simonsson
,
K.
,
2013
, “
Modelling of High Temperature Fatigue Crack Growth in Inconel 718 Under Hold Time Conditions
,”
Int. J. Fatigue
,
52
, pp.
124
130
.
30.
Khobaib
,
M.
,
Ashbaugh
,
N. E.
,
Hartman
,
G. A.
,
Weerasooriya
,
T.
,
Maxwell
,
D. C.
, and
Goodman
,
R. C.
,
1988
, “
Research on Mechanical Properties for Engine Life Prediction
,” Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, OH, Technical Report No. AFWAL-TR-88-4062.
31.
Weerasooriya
,
T.
,
1987
, “
Effect of Frequency on Fatigue Crack Growth Rate of Inconel 718 at High Temperature
,” Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, OH, Technical Report No. AFWAL-TR-87-4038.
32.
Newman
,
J. C.
, Jr.
,
1984
, “
A Crack Opening Stress Equation for Fatigue Crack Growth
,”
Int. J. Fract.
,
24
(
4
), pp.
R131
R135
.
33.
Fracture Analysis Consultants
, 2011, “
FRANC3D Manual 6.0
,”
Fracture Analysis Consultants
,
Ithica, NY
.
34.
Abaqus, Inc.
,
2012
,
Abaqus Theory Manual 6.12
,
Dassault Systmes Simulia Corp.
,
Providence, RI
.
35.
Chang
,
K.-M.
,
Henry
,
M. F.
, and
Benz
,
M. G.
,
1990
, “
Metallurgical Control of Fatigue Crack Propagation in Superalloys
,”
J. Met.
,
42
(
12
), pp.
29
35
.
36.
Liu
,
X. B.
,
Ma
,
L. Z.
,
Chang
,
K. M.
, and
Barbero
,
E.
,
2005
, “
Fatigue Crack Propagation of Ni-Based Superalloys
,”
Acta Metall. Sin.
,
18
(
1
), pp.
55
64
.
You do not currently have access to this content.