Testing and simulation of aero-engine spectra with dwell times are reported in this paper. The modeling concept used is built on linear elastic fracture mechanics (LEFM) and provides a history-dependent evolution description of dwell damage and its interaction with cyclic load. The simulations have been carried out for three spectra: (1) cyclic loads, (2) combined sustained load and cyclic loads, and (3) slow load ramps and cyclic loads, all for surface cracks at 550 °C for Inconel 718. All simulations show reasonable good agreement with experimental results. Prediction of multiple tests of several batches is also provided to show statistical scatter.

References

References
1.
Andrieu
,
E.
,
Molins
,
R.
,
Ghonem
,
H.
, and
Pineau
,
A.
,
1992
, “
Intergranular Crack Tip Oxidation Mechanism in a Nickel-Based Superalloy
,”
Mater. Sci. Eng., A
,
154
(
1
), pp.
21
28
.
2.
Gayda
,
J.
,
Gabb
,
T. P.
, and
Miner
,
R. V.
,
1988
, “
Fatigue Crack Propagation of Nickel-Base Superalloys at 650 °C
,”
Low Cycle Fatigue
,
ASTM
,
Philadelphia
, pp.
293
309
.
3.
Ghonem
,
H.
, and
Zheng
,
D.
,
1992
, “
Depth of Intergranular Oxygen Diffusion During Environment-Dependent Fatigue Crack Growth in Alloy 718
,”
Mater. Sci. Eng., A
,
A150
(
2
), pp.
151
160
.
4.
Gustafsson
,
D.
, and
Lundström
,
E.
,
2013
, “
High Temperature Fatigue Crack Growth Behaviour of Inconel 718 Under Hold Time and Overload Conditions
,”
Int. J. Fatigue
,
48
, pp.
178
186
.
5.
Krupp
,
U.
,
2005
, “
Dynamic Embrittlement—Time-Dependent Quasi-Brittle Intergranular Fracture at High Temperatures
,”
Int. Mater. Rev.
,
50
(
2
), pp.
83
97
.
6.
Woodford
,
D. A.
,
2006
, “
Gas Phase Embrittlement and Time Dependent Cracking of Nickel Based Superalloys
,”
Energy Mater.: Mater. Sci. Eng. Energy Syst.
,
1
(
1
), pp.
59
79
.
7.
Nicholas
,
T.
, and
Weerasooriya
,
T.
,
1986
, “
Hold-Time Effects in Elevated Temperature Fatigue Crack Propagation
,”
Fracture Mechanics
, Vol.
17
,
ASTM
,
Philadelphia
, pp.
155
168
.
8.
Gustafsson
,
D.
,
Lundström
,
E.
, and
Simonsson
,
K.
,
2013
, “
Modelling of High Temperature Fatigue Crack Growth in Inconel 718 Under Hold Time Conditions
,”
Int. J. Fatigue
,
52
, pp.
124
130
.
9.
Lundström
,
E.
,
Simonsson
,
K.
,
Gustafsson
,
D.
, and
Månsson
,
T.
,
2014
, “
A Load History Dependent Model for Fatigue Crack Propagation in Inconel 718 Under Hold Time Conditions
,”
Eng. Fract. Mech.
,
118
, pp.
17
30
.
10.
Kruch
,
S.
,
Prigent
,
P.
, and
Chaboche
,
J. L.
,
1994
, “
A Fracture Mechanics Based Fatigue-Creep-Environment Crack Growth Model for High Temperature
,”
Int. J. Pressure Vessels Piping
,
59
(1–3), pp.
141
148
.
11.
Gallerneau
,
F.
,
Kruch
,
S.
, and
Kanouté
,
P.
,
2001
, “
A New Modelling of Crack Propagation With Fatigue-Creep-Oxidation Interaction Under Non-Isothermal Loading
,”
Symposium on Ageing Mechanisms and Control: Part B Monitoring and Management of Gas Turbine Fleets for Extended Life and Reduced Costs
, Manchester, UK, Oct. 8–11.
12.
Diboine
,
A.
, and
Pineau
,
A.
,
1987
, “
Creep Crack Initiation and Growth in Inconel 718 Alloy at 650 °C
,”
Fatigue Fract. Eng. Mater. Struct.
,
10
(
2
), pp.
141
151
.
13.
Bika
,
D.
,
Pfaendtner
,
J. A.
,
Menyhard
,
M.
, and
McMahon
,
C. J.
, Jr
.,
1995
, “
Sulfur-Induced Dynamic Embrittlement in a Low-Alloy Steel
,”
Acta Metall. Mater.
,
43
(
5
), pp.
1895
1908
.
14.
Krupp
,
U.
,
Kane
,
W. M.
,
Liu
,
X.
,
Dueber
,
O.
,
Laird
,
C.
, and
McMahon
,
C. J.
, Jr.
,
2003
, “
The Effect of Grain-Boundary-Engineering-Type Processing on Oxygen-Induced Cracking of IN718
,”
Mater. Sci. Eng., A
,
349
(
1–2
), pp.
213
217
.
15.
Chang
,
K.-M.
,
Henry
,
M. F.
, and
Benz
,
M. G.
,
1990
, “
Metallurgical Control of Fatigue Crack Propagation in Superalloys
,”
J. Met.
,
42
(
12
), pp.
29
35
.
16.
Liu
,
X. B.
,
Ma
,
L. Z.
,
Chang
,
K. M.
, and
Barbero
,
E.
,
2005
, “
Fatigue Crack Propagation of Ni-Based Superalloys
,”
Acta Metall. Sin.
,
18
(
1
), pp.
55
64
.
17.
Larsen
,
J. M.
, and
Nicholas
,
T.
,
1983
, “
Load Sequence Crack Growth Transients in a Superalloy at Elevated Temperature
,”
Fracture Mechanics: 14th Symposium—Volume II: Testing and Applications
, American Society for Testing and Materials, West Conshohocken, PA, pp. 536–552.
18.
Lundström
,
E.
,
Simonsson
,
K.
,
Månsson
,
T.
, and
Gustafsson
,
D.
,
2014
, “
Modelling of Fatigue Crack Growth in Inconel 718 Under Hold Time Conditions—Application to a Flight Spectrum
,”
Adv. Mater. Res.
,
891–892
, pp.
759
764
.
19.
Newman
,
J. C.
, Jr.
, and
Raju
,
I. S.
,
1984
, “
Stress-Intensity Factor Equations for Cracks in Three-Dimensional Finite Bodies Subjected to Tension and Bending Loads
,” NASA Langely Research Center, Hampton, VA,
NASA
Technical Memorandum No. 85793.
20.
Storgärds
,
E.
, and
Simonsson
,
K.
,
2015
, “
Crack Length Evaluation for Cyclic and Sustained Loading at High Temperature Using Potential Drop
,”
Exp. Mech.
,
55
(
3
), pp.
559
568
.
21.
Lenets
,
Y. N.
,
2012
, “
Practical Aspects of Fatigue Crack Growth in Aero-GTE Applications
,”
ASME
Paper No. GT2012-68736.
22.
SwRI, 2012, NASGRO Manual 7.0, SwRI, Southwest Research Institute, San Antonio, TX.
23.
Ghonem
,
H.
,
Nicholas
,
T.
, and
Pineau
,
A.
,
1993
, “
Elevated Temperature Fatigue Crack Growth in Alloy 718-Part I: Effects of Mechanical Variables
,”
Fatigue Fract. Eng. Mater. Struct.
,
16
(
5
), pp.
565
576
.
24.
Newman
,
J. C.
, Jr.
,
1984
, “
A Crack Opening Stress Equation for Fatigue Crack Growth
,”
Int. J. Fract.
,
24
(4), pp.
R131
R135
.
You do not currently have access to this content.